Align 4-trimethylaminobutyraldehyde dehydrogenase; TMABA-DH; TMABADH; Aldehyde dehydrogenase family 9 member A1; Gamma-aminobutyraldehyde dehydrogenase; EC 1.2.1.47; EC 1.2.1.3; EC 1.2.1.19 (characterized)
to candidate GFF3684 HP15_3626 betaine aldehyde dehydrogenase
Query= SwissProt::Q9JLJ3 (494 letters) >FitnessBrowser__Marino:GFF3684 Length = 489 Score = 503 bits (1296), Expect = e-147 Identities = 256/475 (53%), Positives = 334/475 (70%), Gaps = 8/475 (1%) Query: 25 ASGTEKAF---EPATGREIATFKCSGEKEVNLAVENAKAAFKIWSKKSGLERCQVLLEAA 81 A+ T + F PATG+ I + + E A+E+A+A F WS + +ER ++LL A Sbjct: 18 ANSTGETFPVVNPATGQVIYEVEVADESVQQAAIESARAGFAEWSAMTAIERSRILLRAV 77 Query: 82 RIIKERRDEIAIMETINNGKSIFEAR-LDVDTSWQCLEYYAGLAASMAGEHIQLPGGSFG 140 I++ER DE+A E + GK EA +DV T +E++AGLA S+ G L GG F Sbjct: 78 AILRERNDELAAAEVRDTGKPWQEAEAVDVVTGADAVEFFAGLAPSIEGNQQDL-GGDFY 136 Query: 141 YTRREPLGVCLGIGAWNYPFQIACWKSAPALACGNAMIFKPSPFTPVSALLLAEIYTKAG 200 YTRREPLG+C GIGAWNYP QIACWKSAPALACGNAMIFKPS TP+ A+ LAEI+T+AG Sbjct: 137 YTRREPLGICAGIGAWNYPIQIACWKSAPALACGNAMIFKPSEETPMGAVKLAEIFTEAG 196 Query: 201 APNGLFNVVQGGAATGQFLCQHRDVAKVSFTGSVPTGMKIMEMAAKGIKPITLELGGKSP 260 P G+FNVVQG A GQ+L H ++AKVSFTG V TG K+M A+ +K +T+ELGGKSP Sbjct: 197 VPAGVFNVVQGAAEVGQWLTHHPEIAKVSFTGEVATGKKVMAAASSTLKDVTMELGGKSP 256 Query: 261 LIIFSDCNMKNAVKGALLANFLTQGQVCCNGTRVFVQKEIADAFTKEVVRQTQ-RIKIGD 319 LIIF D +++NA+ A++ NF TQG++C NGTRVFV +++ F + ++ +T+ IK GD Sbjct: 257 LIIFDDADLENAISAAMVGNFYTQGEICTNGTRVFVHEDLYPRFIERLLERTRNNIKPGD 316 Query: 320 PLLEDTRMGPLINAPHLERVLGFVRSAKEQGATVLCGGEPYAPEDPKLKHGYYMTPCILT 379 P+ DT G LI+A H + VL ++ +GAT+ GG + PED K GY++ P I T Sbjct: 317 PMNPDTNFGALISAKHRDLVLDYIAKGLSEGATLSHGGRAFEPEDS--KGGYFVEPTIFT 374 Query: 380 NCTDDMTCVKEEIFGPVMSILTFETEAEVLERANDTTFGLAAGVFTRDIQRAHRVAAELQ 439 +CTDDMT VKEEIFGPVMS+LTF E EV+ RAN+T GLAAGVFT DI+RAHRV ++Q Sbjct: 375 DCTDDMTIVKEEIFGPVMSVLTFRDEDEVIARANNTDTGLAAGVFTNDIRRAHRVIHQIQ 434 Query: 440 AGTCYINNYNVSPVELPFGGYKKSGFGRENGRVTIEYYSQLKTVCVEMGDVESAF 494 AG C+IN+Y SP E+P GGYK SG GRENGR TI +Y+Q+K+V V M D+++ F Sbjct: 435 AGICWINSYGASPAEMPVGGYKLSGIGRENGRETIAHYTQIKSVYVGMEDLDAPF 489 Lambda K H 0.319 0.136 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 754 Number of extensions: 44 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 489 Length adjustment: 34 Effective length of query: 460 Effective length of database: 455 Effective search space: 209300 Effective search space used: 209300 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory