Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate GFF178 PS417_00895 succinate-semialdehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >FitnessBrowser__WCS417:GFF178 Length = 480 Score = 380 bits (977), Expect = e-110 Identities = 199/465 (42%), Positives = 278/465 (59%), Gaps = 2/465 (0%) Query: 10 QLLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHE 69 Q IDG WVDA +G+T+ V NPATG+ +G V G A+ RA+ AA AWR + A E Sbjct: 12 QAFIDGAWVDADNGQTLKVNNPATGEILGTVPKMGAAETRRAIEAADKALPAWRALTAKE 71 Query: 70 RAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIV 129 RA +R+ L+ E D + +LMT EQGKPL EA+ E++ AA IEWFA+E +R+YG ++ Sbjct: 72 RANKLRRWFELLIENQDDLGRLMTLEQGKPLAEAKGEIVYAASFIEWFAEEAKRIYGDVI 131 Query: 130 PPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAA 189 P + V+K+P+G AA TPWNFP + RK ALA GC+ ++K +TP S A Sbjct: 132 PGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVIKPASQTPFSALA 191 Query: 190 LLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKR 249 L+ AG+P GV+ +V G +I L +P++RK++FTGST +G+QL + +K+ Sbjct: 192 LVELAHRAGIPKGVLSVVTGSAGDIGGELTSNPIVRKLSFTGSTEIGRQLMAECAKDIKK 251 Query: 250 ATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVK 309 ++ELGG+AP IV +DAD+ AV+ A +K+RN GQ C+ R + +S+ D F L Sbjct: 252 VSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDSVYDAFAEKLKV 311 Query: 310 HAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPT 369 LK+GNGLEEGTT G L + + + + I +A K GA++ GG+ + EGNFF PT Sbjct: 312 AVAKLKIGNGLEEGTTTGPLIDEKAVAKVQEHIADALKKGATLLAGGKVM--EGNFFEPT 369 Query: 370 VIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQ 429 ++ NVP DA V E FGP+A + F E IA +N FGLA Y + R V + + Sbjct: 370 ILTNVPKDAAVAKEETFGPLAPLFRFKDEAEVIAMSNDTEFGLASYFYARDLGRVFRVAE 429 Query: 430 RLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTK 474 LE GM+ +N PFGG+K SG G EG +E YL K Sbjct: 430 ALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIK 474 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 602 Number of extensions: 21 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 480 Length adjustment: 34 Effective length of query: 447 Effective length of database: 446 Effective search space: 199362 Effective search space used: 199362 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory