Align malonate-semialdehyde dehydrogenase (EC 1.2.1.15); malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18); methylmalonate-semialdehyde dehydrogenase (CoA-acylating) (EC 1.2.1.27) (characterized)
to candidate AZOBR_RS22500 AZOBR_RS22500 methylmalonate-semialdehyde dehydrogenase
Query= BRENDA::A0A081YAY7 (498 letters) >FitnessBrowser__azobra:AZOBR_RS22500 Length = 499 Score = 742 bits (1915), Expect = 0.0 Identities = 357/497 (71%), Positives = 416/497 (83%), Gaps = 1/497 (0%) Query: 1 MTLIKHLIGGELIADTG-RTADVFNPSTGEAVRKVPLADRETMQQAIDAAKAAFPAWRNT 59 M L+ HLIGG A R+AD+ NP+TGE V +VPLA R T++ AI AA+AAFPAWR T Sbjct: 1 MPLVPHLIGGAADAPAETRSADIVNPATGETVGRVPLAGRATVESAIAAAEAAFPAWRAT 60 Query: 60 PPAKRAQVLFRFKQLLEANEERIVKLISEEHGKTIEDAAGELKRGIENVEYATAAPEILK 119 PPAKRA+V+FRF+QLLE N +R+ I+ EHGKT+EDA GEL RGIENVEYA ++LK Sbjct: 61 PPAKRARVMFRFRQLLEDNADRVCAAITREHGKTLEDARGELTRGIENVEYACGIADLLK 120 Query: 120 GEYSRNVGPNIDAWSDFQPIGVVAGITPFNFPAMVPLWMYPLAIACGNTFILKPSERDPS 179 GE+S+NVGP ID+WS+FQP+GVVAGITPFNFPAMVPLWM+P+A+ACGN FILKPSERDPS Sbjct: 121 GEHSKNVGPGIDSWSEFQPLGVVAGITPFNFPAMVPLWMFPVAVACGNCFILKPSERDPS 180 Query: 180 STLLIAELFHEAGLPKGVLNVVHGDKGAVDALIEAPEVKALSFVGSTPIAEYIYSEGTKR 239 ++LL+A+L EAGLP GVLNVVHGDK AVD L+ P V+A+SFVGSTP+AEY+Y+ GT Sbjct: 181 ASLLVAQLAQEAGLPPGVLNVVHGDKEAVDTLLTDPRVQAVSFVGSTPVAEYVYATGTAH 240 Query: 240 GKRVQALGGAKNHAVLMPDADLDNAVSALMGAAYGSCGERCMAISVAVCVGDQIADALVQ 299 GKRVQALGGAKNHA++MPDADLDNAVSA+MGAAYGSCGERCMAISV V VGD AD +V Sbjct: 241 GKRVQALGGAKNHAIVMPDADLDNAVSAIMGAAYGSCGERCMAISVVVAVGDATADRVVA 300 Query: 300 KLVPQIKGLKIGAGTSCGLDMGPLVTGAARDKVTGYIDTGVAQGAELVVDGRGYKVAGHE 359 L Q++ LK+GAGT G DMGPLVT A +KV G++D GVA+GAELVVDGRG V GHE Sbjct: 301 MLAEQVRSLKVGAGTGAGCDMGPLVTRAHFEKVKGFVDQGVAEGAELVVDGRGLVVPGHE 360 Query: 360 NGFFLGGTLFDRVTPEMTIYKEEIFGPVLCIVRVNSLEEAMQLINDHEYGNGTCIFTRDG 419 GFFLGG LFDRVTP+M IY+EEIFGPVLC+VRV +++E M LI+ HEYGNGTC+FTRDG Sbjct: 361 GGFFLGGCLFDRVTPDMRIYREEIFGPVLCVVRVATMQEGMDLIDAHEYGNGTCLFTRDG 420 Query: 420 EAARLFCDEIEVGMVGVNVPLPVPVAYHSFGGWKRSLFGDLHAYGPDGVRFYTKRKAITQ 479 EAAR F D I+VGMVG+NVPLPVPV+YHSFGGWKRSLFGDL AYGPDGVRFYT+RK ITQ Sbjct: 421 EAARYFTDAIKVGMVGINVPLPVPVSYHSFGGWKRSLFGDLAAYGPDGVRFYTRRKTITQ 480 Query: 480 RWPQRKSHEAAQFAFPS 496 RWP E AQF+FPS Sbjct: 481 RWPTGGVREGAQFSFPS 497 Lambda K H 0.319 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 851 Number of extensions: 28 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 498 Length of database: 499 Length adjustment: 34 Effective length of query: 464 Effective length of database: 465 Effective search space: 215760 Effective search space used: 215760 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory