Align D-lactate oxidase and glycolate oxidase, FAD-linked subunit (EC 1.1.3.15) (characterized)
to candidate AO353_21310 AO353_21310 glycolate oxidase subunit GlcD
Query= reanno::psRCH2:GFF3772 (499 letters) >FitnessBrowser__pseudo3_N2E3:AO353_21310 Length = 499 Score = 851 bits (2198), Expect = 0.0 Identities = 413/499 (82%), Positives = 457/499 (91%) Query: 1 MNILYDERVDGALPKVDKAALLAELQAQLPDLDILHRSEDLKPYECDGLSAYRTTPLLVV 60 MNILYDER+DGALP VDK ALL L+ QLP+LDIL+R E+LKPYECDGLSAYRTTP+LV+ Sbjct: 1 MNILYDERIDGALPPVDKDALLNALREQLPELDILYREEELKPYECDGLSAYRTTPMLVL 60 Query: 61 LPERIEQVETLLKLCHQRGVPVVARGAGTGLSGGALPLEQGILLVMARFNKILEVDPAGR 120 LP +EQV+ +LKLCH VPVVARGAGTGLSGGALPLE+G+LLVMARFN+IL +DPA R Sbjct: 61 LPRYVEQVQAVLKLCHAHRVPVVARGAGTGLSGGALPLEKGVLLVMARFNQILHIDPAAR 120 Query: 121 FARVQPGVRNLAISQAAAPYELYYAPDPSSQIACSIGGNVAENAGGVHCLKYGLTVHNLL 180 ARVQPGVRNLAISQA AP LYYAPDPSSQIACSIGGNVAENAGGVHCLKYGLTVHN+L Sbjct: 121 TARVQPGVRNLAISQAVAPLGLYYAPDPSSQIACSIGGNVAENAGGVHCLKYGLTVHNVL 180 Query: 181 KVDILTVEGERMTLGSDALDSPGFDLLALFTGSEGMLGIVTEVTVKLLPKPQVAKVLLAA 240 K+++LT+EGE +TLGSDALDS G DLLALF GSEG+LGI+TEVTVKLLPKPQ AKVLLA+ Sbjct: 181 KLEVLTIEGEHLTLGSDALDSAGLDLLALFNGSEGLLGIITEVTVKLLPKPQAAKVLLAS 240 Query: 241 FDSVEKAGRAVGDIIAAGIIPGGLEMMDNLSIRAAEDFIHAGYPVDAEAILLCELDGVEA 300 FDSVEKAG AV +IIAAGIIP GLEMMDNL++RAAEDF+HAGYPVDAEAILLCELDGVEA Sbjct: 241 FDSVEKAGGAVAEIIAAGIIPAGLEMMDNLALRAAEDFVHAGYPVDAEAILLCELDGVEA 300 Query: 301 DVHDDCARVSEVLKLAGATEVRLAKDEAERVRFWAGRKNAFPAVGRISPDYYCMDGTIPR 360 DV DDC RV VL+ AGA+EVR A+DEAERV+FWAGRK AFPA+GR+SPDYYCMDGTIPR Sbjct: 301 DVRDDCLRVRAVLERAGASEVRQARDEAERVKFWAGRKAAFPAIGRLSPDYYCMDGTIPR 360 Query: 361 RELPGVLKGISDLSEQFGLRVANVFHAGDGNMHPLILFDANQPGELERAEDLGGKILELC 420 RELP VLKGI++L+ ++GLRVANVFHAGDGNMHPLILFDANQPGELER E LGGKILELC Sbjct: 361 RELPRVLKGIAELASEYGLRVANVFHAGDGNMHPLILFDANQPGELERTEALGGKILELC 420 Query: 421 VKVGGSITGEHGVGREKINQMCSQFNADELTLFHAVKAAFDPSGLLNPGKNIPTLHRCAE 480 VKVGGSITGEHGVGREKINQMC+QFN+DELT+FHA+K AFD GLLNPGKNIPTLHRCAE Sbjct: 421 VKVGGSITGEHGVGREKINQMCAQFNSDELTVFHAIKIAFDAKGLLNPGKNIPTLHRCAE 480 Query: 481 FGRMHIHNGQLPFPELERF 499 FG MH+H GQLPFP+LERF Sbjct: 481 FGAMHVHGGQLPFPDLERF 499 Lambda K H 0.320 0.140 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 939 Number of extensions: 25 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 499 Length of database: 499 Length adjustment: 34 Effective length of query: 465 Effective length of database: 465 Effective search space: 216225 Effective search space used: 216225 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory