GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gabT in Chlorobium phaeobacteroides BS1

Align 4-aminobutyrate aminotransferase; EC 2.6.1.19 (characterized, see rationale)
to candidate 642683150 Cphamn1_0638 acetylornithine aminotransferase apoenzyme (EC 2.6.1.11)

Query= uniprot:A1S8Y2
         (425 letters)



>IMG__ChlphaBS1_FD:642683150
          Length = 397

 Score =  196 bits (498), Expect = 1e-54
 Identities = 133/404 (32%), Positives = 213/404 (52%), Gaps = 41/404 (10%)

Query: 25  PVFTERAENATVWDVEGREYIDFAGGIAVLNTGHLHPKVKAAVAEQLEKFSHTCFMVLGY 84
           P+     E   ++  +G  Y+D   GI V   G+   ++  A+  Q +K  H   + +  
Sbjct: 22  PLAVTHGEGVYLFSSDGTRYLDMISGIGVNALGYDDKRIVEAITRQAKKIIHASNLFM-L 80

Query: 85  ESYVAVCEKLNQLVPGDFAKKSALF--TSGSEAVENAIKVARAYTKRAG------VIAFT 136
           E    + EKL      D +  S +F   SG+EAVE AIK++R +   +G      V++ +
Sbjct: 81  EPQFRLAEKLL-----DISGMSKVFFANSGAEAVEAAIKLSRKWASLSGNNDKREVLSLS 135

Query: 137 SGYHGRTMAALALTGKVAPYSKGMGLMQANVFRAEFPCALHGVSEDDAMASIERIFKNDA 196
           + +HGRT  A++LT K A Y+ G        F    P A   +  +D       I   +A
Sbjct: 136 NCFHGRTYGAMSLTAKAA-YTDG--------FEPLLP-ATGSIGFND-------IDDLEA 178

Query: 197 EPSDI-AAIILEPVQGEGGFYAATPGFMKRLRELCDREGIMLIADEVQTGAGRTGTFFAM 255
           + SD  AA+ +E VQGEGG +  +PGF+  L+ L ++   +L+ADE+Q G GRTG FF+ 
Sbjct: 179 KISDTTAAVFIEFVQGEGGVHRISPGFVNSLKRLREKHNFLLVADEIQAGCGRTGKFFSY 238

Query: 256 EQMGVAADITTFAKSIAGGFPLSGITGRAEVMDAIGPGGLGGTYGGSPLACAAALAVIEV 315
               ++ D+   AK + GG PLS + G  +VMD    G  G T+GG+P+ACAA LA+I+ 
Sbjct: 239 MHFDLSPDLVCLAKPLGGGLPLSAVIGGEKVMDVFTAGNHGTTFGGNPVACAAGLALIDA 298

Query: 316 FEEEKLLERSNAIGQTIKSAIGELASRYPQIAEVRGLGSMIAIELMENGKPAPEYCPQVL 375
             ++ L+ER+   G+ I++A+ +LAS++ QI E+R  G MI   +    + A  Y  + L
Sbjct: 299 IYDDNLMERAAGTGEWIQAALQKLASKHRQILEIRQYGLMIGTTV---NREASYYVQEAL 355

Query: 376 TEARNRGLILLSCGTYGNVLRILVPITAPDEQIQRGLEIMAECF 419
            +       +L   T  NV+R+L P+T   E+ Q+ ++ + E F
Sbjct: 356 KKQ------VLINATSKNVIRLLPPLTTTLEEAQQCIDCLDEIF 393


Lambda     K      H
   0.319    0.136    0.391 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 367
Number of extensions: 16
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 397
Length adjustment: 31
Effective length of query: 394
Effective length of database: 366
Effective search space:   144204
Effective search space used:   144204
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory