GapMind for catabolism of small carbon sources

 

Alignments for a candidate for proV in Rhizobium johnstonii 3841

Align Glycine betaine/proline betaine transport system ATP-binding protein ProV (characterized)
to candidate WP_011654139.1 RL_RS27810 glycine betaine/L-proline ABC transporter ATP-binding protein ProV

Query= SwissProt::P17328
         (400 letters)



>NCBI__GCF_000009265.1:WP_011654139.1
          Length = 410

 Score =  432 bits (1110), Expect = e-125
 Identities = 225/393 (57%), Positives = 289/393 (73%), Gaps = 3/393 (0%)

Query: 4   KLEVKNLYKIFGEHPQRAFKYIEKGLSKEQILEKTGLSLGVKDASLAIEEGEIFVIMGLS 63
           K+ +KN+YK+FGEHP++AF  +  G +K +I   TG S+GV DAS  I  GEIFVIMGLS
Sbjct: 17  KISLKNIYKVFGEHPKKAFALLRAGKTKSEIHAATGCSIGVNDASFDIRAGEIFVIMGLS 76

Query: 64  GSGKSTMVRLLNRLIEPTRGQVLIDGVDIAKISDAELREVRRKKIAMVFQSFALMPHMTV 123
           GSGKST++RLLNRLIEP+ G + IDG DI  +S +EL  +RR+ I+MVFQS AL+P+ TV
Sbjct: 77  GSGKSTLLRLLNRLIEPSSGSIEIDGRDITGMSRSELIALRRRDISMVFQSVALLPNRTV 136

Query: 124 LDNTAFGMELAGIAAQERREKALDALRQVGLENYAHAYPDELSGGMRQRVGLARALAINP 183
           L+N AFG+E+AG+    R++KAL AL+ VGL+ YA + PD+LSGGM+QRVGLARALA  P
Sbjct: 137 LNNAAFGLEVAGVGEAGRKQKALAALKAVGLDGYADSRPDQLSGGMKQRVGLARALASEP 196

Query: 184 DILLMDEAFSALDPLIRTEMQDELVKLQAKHQRTIVFISHDLDEAMRIGDRIAIMQNGEV 243
            ILLMDEAFSALDPLIRTEMQDELV+LQ++H RTIVF+SHDLDEAMRIGDRI IMQNG V
Sbjct: 197 TILLMDEAFSALDPLIRTEMQDELVRLQSEHSRTIVFVSHDLDEAMRIGDRICIMQNGNV 256

Query: 244 VQVGTPDEILNNPANDYVRTFFRGVDISQVFSAKDIARRSPVGLIRKTPGFGPRSALKLL 303
           VQVG PDEI+  PANDYVR+FFR VD++ VF A D+AR+S V +I +  G    +AL+ +
Sbjct: 257 VQVGAPDEIVTQPANDYVRSFFRNVDVAHVFKAGDVARKSQVTIIER-EGVSAAAALERM 315

Query: 304 QDEDREYGYVIERGNKFVGVVSIDSL--KAALSQAQGIEAALIDDPLVVDAQTPLSELLS 361
           ++ DREY  ++ R   + G++S  SL  K     A     A + +   + A  PLS +L 
Sbjct: 316 KNYDREYAIILGRDKTYHGMISQTSLIEKMRAKAADPYRGAFLTEIQAIPASEPLSNVLG 375

Query: 362 HVGQAPCAVPVVDEEHQYVGIISKRMLLQALDR 394
            V  +P  VPVV + ++Y+G ISK  LL+ LDR
Sbjct: 376 KVAASPWPVPVVCDRNRYIGSISKSALLETLDR 408


Lambda     K      H
   0.319    0.137    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 448
Number of extensions: 18
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 410
Length adjustment: 31
Effective length of query: 369
Effective length of database: 379
Effective search space:   139851
Effective search space used:   139851
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory