GapMind for catabolism of small carbon sources

 

Alignments for a candidate for dadA in Azorhizobium caulinodans ORS 571

Align D-alanine dehydrogenase (EC 1.4.99.-) (characterized)
to candidate WP_012170593.1 AZC_RS10700 D-amino acid dehydrogenase

Query= reanno::azobra:AZOBR_RS08020
         (436 letters)



>NCBI__GCF_000010525.1:WP_012170593.1
          Length = 417

 Score =  543 bits (1400), Expect = e-159
 Identities = 263/416 (63%), Positives = 315/416 (75%)

Query: 1   MRVIVLGSGVIGVSTAYFLAKAGHEVTVVDRQPGPALETSYANAGEVSPGYSAPWAAPGL 60
           MR+IVLG+GVIGV++AYFLAKAGHEVTV+DRQ GPALETSYANAGEVSPGYS+PWAAPG+
Sbjct: 1   MRIIVLGAGVIGVTSAYFLAKAGHEVTVLDRQAGPALETSYANAGEVSPGYSSPWAAPGI 60

Query: 61  MAKAVKWMLMKHSPLVIRPKMDPAMWSWCLKLLANANERSYEINKGRMVRLAEYSRDCLR 120
             KA KW+ MKH+PL++RP +DP  W W L++LAN     Y +NKGRMVR+AEYSRD L 
Sbjct: 61  PMKAAKWLFMKHAPLIVRPTLDPVTWRWMLQMLANCTSARYAVNKGRMVRIAEYSRDVLM 120

Query: 121 VLRDETGIRYDERAKGTLQVFRTQKQVDAAATDMAVLDRFKVPYSLLDVEGCAAVEPALR 180
            LR +TGIRYDER +GTL+VFR+QKQ+D  A D+AVL    VP+ +LD EGC  VEP L+
Sbjct: 121 QLRADTGIRYDERMQGTLEVFRSQKQLDGIAKDIAVLKADGVPFEVLDREGCVQVEPGLK 180

Query: 181 LVKEKIVGGLLLPGDETGDCFRFTNALAAMATELGVEFRYNTGIRKLESDGRRVTGVVTD 240
               KIVGGL LPGDETGDCF FTNALA +A  LGV F YN  +++L  DG R+  V T 
Sbjct: 181 PAAHKIVGGLRLPGDETGDCFLFTNALAKLAEGLGVRFVYNVDLKRLRRDGDRIAAVETA 240

Query: 241 AGTLTADSYVVAMGSYSPTLVKPFGLDLPVYPVKGYSLTLPIVDAAGAPESTVMDETHKI 300
            G   ADSYV A+GSY P  + P GLDLP+YPVKGYS+T+PI+D A AP STVMDE +KI
Sbjct: 241 QGDYIADSYVAALGSYMPGFLAPLGLDLPIYPVKGYSITVPILDEAKAPVSTVMDEYYKI 300

Query: 301 AVTRLGDRIRVGGTAELTGFDLTLRPGRRGPLDHVVSDLFPTGGDLSKAEFWTGLRPNTP 360
           A+TRLG RIRVGG AE+  F+  L P R+  L   V DLF   GD  KAEFW GLRP TP
Sbjct: 301 AITRLGSRIRVGGMAEIARFNKDLPPARQATLTLSVEDLFGGAGDQKKAEFWCGLRPMTP 360

Query: 361 DGTPIVGPTPVRNLFLNTGHGTLGWTMAAGSGRVVADVVGGRQTEIDMDGLTVARY 416
           DGTPI+G T   NLFLN GHGTLGWTM+ GS R+++D++ G + EI  +GL ++RY
Sbjct: 361 DGTPIIGKTKFGNLFLNGGHGTLGWTMSCGSARLLSDIISGAKPEISTEGLDLSRY 416


Lambda     K      H
   0.319    0.136    0.408 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 590
Number of extensions: 25
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 436
Length of database: 417
Length adjustment: 32
Effective length of query: 404
Effective length of database: 385
Effective search space:   155540
Effective search space used:   155540
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory