GapMind for catabolism of small carbon sources

 

Alignments for a candidate for davT in Methanococcus maripaludis C5

Align 5-aminovalerate transaminase (EC 2.6.1.48) (characterized)
to candidate WP_011868252.1 MMARC5_RS02450 acetylornithine transaminase

Query= BRENDA::Q9I6M4
         (426 letters)



>NCBI__GCF_000016125.1:WP_011868252.1
          Length = 395

 Score =  243 bits (621), Expect = 6e-69
 Identities = 156/406 (38%), Positives = 225/406 (55%), Gaps = 40/406 (9%)

Query: 25  PVVAERAENSTVWDVEGREYIDFAGGIAVLNTGHLHPKVIAAVQEQLGKLSHTCFQVLAY 84
           PVV  + +  +V+D EG+EY DF  GI V N GH HPKV+  ++ Q   L H    +   
Sbjct: 25  PVVLVKGKGMSVFDTEGKEYFDFLAGIGVNNVGHCHPKVVETIKNQAQTLIHIS-NIYYN 83

Query: 85  EPYIELAEEIAKRVPGDFPKKTLLVTSGSEAVENAVKIARAATGRAG----VIAFTGAYH 140
            P IELA+++      D   K     SG+EA E A+K+AR    + G    +I    A+H
Sbjct: 84  VPQIELAKKLVNLSGLD---KAFFCNSGAEANEAAIKLARKYGKKKGKEGEIITMEHAFH 140

Query: 141 GRTMMTLGLTGKVVPYSAGMGLMPGGIFRALAPCELHGVSEDDSIASIERIFKNDAQPQD 200
           GRT+ T+  T K   Y  G   +P G          + +  +D    IE +  N    + 
Sbjct: 141 GRTLTTVTATPKA-KYQEGFEPLPQGF---------NYIPFND----IEAL--NAGISEK 184

Query: 201 IAAIIIEPVQGEGGFYVNSKSFMQRLRALCDQHGILLIADEVQTGAGRTGTFFATEQLGI 260
            AAI+IEPVQGEGG +   K +++ +R LCD++ I+LI DEVQ G GRTGT F+ EQ G+
Sbjct: 185 TAAIMIEPVQGEGGIHPADKEYLKAVRKLCDENNIVLIFDEVQCGMGRTGTMFSYEQYGV 244

Query: 261 VPDLTTFAKSVGGGFPISGVAGKAEIMDAIAPGGLGGTYAGSPIACAAALAVLKVFEEEK 320
           VPD+ T AK +GGGFPI  +  K+EI DA  PG  G T+ G+P+ACA++ A + V     
Sbjct: 245 VPDIVTLAKGLGGGFPIGAMVAKSEIADAFTPGSHGTTFGGNPLACASSNAAIDVI--SG 302

Query: 321 LLERSQAVGERLKAGLREIQAKHKVIGDVRGLGSMVAIEL-FEGGDTHKPAAELVSKIVV 379
           LLE +  +GE  ++ L++++ K+  I +VR LG MV +EL F G D           IV 
Sbjct: 303 LLENTLEMGEYFRSELKKLEEKYDFIKEVRSLGLMVGVELTFNGSD-----------IVS 351

Query: 380 RAREKGLILLSCGTYYNVIRFLMPVTIPDAQLEKGLAILAECFDEL 425
           +  EKG  L++C T   V+RFL P+ +    ++  ++ L E F E+
Sbjct: 352 KMFEKG-FLINC-TSDTVLRFLPPLIVEKEHIDSIISALDEVFSEI 395


Lambda     K      H
   0.319    0.137    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 371
Number of extensions: 13
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 426
Length of database: 395
Length adjustment: 31
Effective length of query: 395
Effective length of database: 364
Effective search space:   143780
Effective search space used:   143780
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory