GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gltP in Rhizorhabdus wittichii RW1

Align proton/sodium-glutamate symport protein GltT (characterized)
to candidate WP_011952050.1 SWIT_RS06135 dicarboxylate/amino acid:cation symporter

Query= CharProtDB::CH_088342
         (421 letters)



>NCBI__GCF_000016765.1:WP_011952050.1
          Length = 421

 Score =  293 bits (751), Expect = 5e-84
 Identities = 152/412 (36%), Positives = 253/412 (61%), Gaps = 26/412 (6%)

Query: 6   LAWQIFIGLILGIIVGAIFYGN-------PKVAAYLQPIGDIFLRLIKMIVIPIVISSLV 58
           L + I   +I GI+VG               V  ++  + ++FLRLIKMI+ P+V ++LV
Sbjct: 5   LTYYILGAMIAGIVVGITLNRTITDPATLTDVTGHISILTELFLRLIKMIIAPLVFATLV 64

Query: 59  VGVASVGDLKKLGKLGGKTIIYFEIITTIAIVVGLLAANIFQPGAGVNMKSLEKTDIQSY 118
            G+A +GD   LG++G ++I +F   + +++ +GL+  N+ QPG G ++  L      + 
Sbjct: 65  TGIAHMGDTAALGRVGFRSIAWFLTASLMSLTLGLIMVNLLQPGVGADLV-LPPEGASAG 123

Query: 119 VDTTNEVQHHSMVETFVNIVPKNIFESLSTGDMLPIIFFSVMFGLGVAAIGEKGKPVLQF 178
           V   +     S+ +   ++VPK+ FE+++T ++L I+ FSV  G+ + A+GE+  P+++ 
Sbjct: 124 VSQAD----FSLKQFVTHLVPKSFFEAMATNEILQIVVFSVFTGVAITAVGERAAPLVRG 179

Query: 179 FQGTAEAMFYVTNQIMKFAPFGVFALIGVTVSKFGVESLIPLSKLVIVVYATM------- 231
            +   + M  +T+ +M+FAPF VFA +   +++ G   L+   K +   Y +M       
Sbjct: 180 IEALVQVMLQITDYVMRFAPFAVFAAVTTALAEQGPGILLSFGKFMGSFYLSMFLLWGLL 239

Query: 232 LFFIFAVLGGVAKLFGINIFHIIKILKDELILAYSTASSETVLPRIMDKMEKFGCPKAIT 291
           L   + ++GG +KL       +I+ +++ ++LA+STASSE   PR ++ +++FG P  I 
Sbjct: 240 LLLCYLIVGGRSKL-------LIRYIREPILLAFSTASSEAAFPRTLEALDRFGVPPRIA 292

Query: 292 SFVIPTGYSFNLDGSTLYQALAAIFIAQLYGIDMSVSQQISLLLVLMVTSKGIAGVPGVS 351
           SFV+P GYSFNLDGS +Y   A +FIAQ YGI+++ + Q+++LL+LMVTSKGIAGVP  S
Sbjct: 293 SFVLPLGYSFNLDGSMIYCTFATMFIAQAYGIELTFAHQVTMLLILMVTSKGIAGVPRAS 352

Query: 352 FVVLLATLGTVGIPVEGLAFIAGIDRILDMARTAVNVIGNSLAAIIMSKWEG 403
            V++ +TL    IP  GL  I  +D  LDM R+A NV+GN++A++I++KWEG
Sbjct: 353 LVIISSTLAFFDIPEAGLLLILAVDHFLDMGRSATNVVGNAVASVIVAKWEG 404


Lambda     K      H
   0.326    0.143    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 380
Number of extensions: 14
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 421
Length of database: 421
Length adjustment: 32
Effective length of query: 389
Effective length of database: 389
Effective search space:   151321
Effective search space used:   151321
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory