Align high affinity cationic amino acid transporter 1 (characterized)
to candidate WP_012589784.1 MSIL_RS03830 amino acid permease
Query= CharProtDB::CH_091324 (622 letters) >NCBI__GCF_000021745.1:WP_012589784.1 Length = 494 Score = 272 bits (695), Expect = 3e-77 Identities = 161/417 (38%), Positives = 233/417 (55%), Gaps = 20/417 (4%) Query: 24 EESRLSRCLNTYDLVALGVGSTLGAGVYVLAGAVARENAGPAIVISFLIAALASVLAGLC 83 E L R L+ L++LG+G +GAG++VL G A AGPAI +SF++A L LAGLC Sbjct: 25 ETPNLRRTLSLASLISLGIGCIIGAGIFVLTGHAAAAYAGPAISLSFVLAGLVCALAGLC 84 Query: 84 YGEFGARVPKTGSAYLYSYVTVGELWAFITGWNLILSYIIGTSSVARAWSATF-----DE 138 Y E + VP GSAY Y+Y T+GE A+I GW+L+L Y G ++VA WS D Sbjct: 85 YAEMASTVPVAGSAYTYAYATLGEFIAWIIGWDLLLEYAFGATTVAIGWSGYVVSFLRDF 144 Query: 139 LIGKPIG------EFSRQHMALNAPGVLAQTPDIFAVIIIIILTGLLTLGVKESAMVNKI 192 IG P F A G L P AV I++ LT LL +GV ESA VN I Sbjct: 145 HIGIPAALAGAPFAFDPASGAWTHTGALVNAP---AVAIVLALTALLVVGVNESAKVNNI 201 Query: 193 FTCINVLVLCFIVVSGFVKGSIKNWQLTEKNFSCNNNDTNVKYGEGGFMPFGFSGVLSGA 252 I + ++ +++G S NW +T N N GE +G+SG+L GA Sbjct: 202 IVAIKLAIIVVFILAGLSSVSTANW-VTSANPDGAFIPPNAGPGE-----YGWSGILRGA 255 Query: 253 ATCFYAFVGFDCIATTGEEVKNPQKAIPVGIVASLLICFIAYFGVSAALTLMMPYFCLDI 312 A F+A++GFD ++T +E KNPQ+ +P+GI+ SL+IC + Y VS +T ++P+ L + Sbjct: 256 AVVFFAYIGFDAVSTAAQEAKNPQRDMPLGILGSLVICTVLYVLVSIVITGIVPFDRLSV 315 Query: 313 DSPLPGAFKHQGWEEAKYAVAIGSLCALSTSLLGSMFPMPRVIYAMAEDGLLFKFLAKIN 372 P+ G V +G++ LS+ +L + RV+Y++A DGLL AK++ Sbjct: 316 PDPIALGVDVIGLRWLSTVVKLGAILGLSSVVLVLLLGQTRVLYSIARDGLLPPIAAKVH 375 Query: 373 NRTKTPVIATVTSGAIAAVMAFLFELKDLVDLMSIGTLLAYSLVAACVLVLRYQPEQ 429 R +TP + T+ +G I AVMA + + + +L+SIGTL A+++V A VL LRY Q Sbjct: 376 PRFRTPYLTTIGTGLIVAVMAGVLPIGLVGELVSIGTLFAFAIVCAGVLFLRYTHPQ 432 Score = 64.3 bits (155), Expect = 1e-14 Identities = 38/129 (29%), Positives = 63/129 (48%), Gaps = 9/129 (6%) Query: 479 VEPSKFSGLIVNISAGLLAALIITVCIVAVLGREALAEGTLWAVFVMTGSVLLCMLVTGI 538 V P + + I GL+ A++ V + ++G E ++ GTL+A ++ VL Sbjct: 374 VHPRFRTPYLTTIGTGLIVAVMAGVLPIGLVG-ELVSIGTLFAFAIVCAGVLFL------ 426 Query: 539 IWRQPESKTKLSFKVPFVPVLPVLSIFVNIYLMMQLDQGTWVRFAVWMLIGFTIYFGYGI 598 R + F+ P + ++ L + LM+ L + TW+RFA+W+ IG +YF YG Sbjct: 427 --RYTHPQIHRPFRAPLIAIVAPLGAAAAVVLMLGLPRDTWIRFAIWLAIGLILYFTYGR 484 Query: 599 WHSEEASLA 607 HS A A Sbjct: 485 RHSRLARAA 493 Lambda K H 0.324 0.138 0.417 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 795 Number of extensions: 39 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 622 Length of database: 494 Length adjustment: 36 Effective length of query: 586 Effective length of database: 458 Effective search space: 268388 Effective search space used: 268388 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory