Align Alpha-ketoglutaric semialdehyde dehydrogenase 1; alphaKGSA dehydrogenase 1; 2,5-dioxovalerate dehydrogenase 1; 2-oxoglutarate semialdehyde dehydrogenase 1; KGSADH-I; Succinate-semialdehyde dehydrogenase [NAD(+)]; SSDH; EC 1.2.1.26; EC 1.2.1.24 (characterized)
to candidate WP_012968598.1 KVAR_RS16685 NAD-dependent succinate-semialdehyde dehydrogenase
Query= SwissProt::Q1JUP4 (481 letters) >NCBI__GCF_000025465.1:WP_012968598.1 Length = 482 Score = 361 bits (927), Expect = e-104 Identities = 193/465 (41%), Positives = 271/465 (58%) Query: 10 QLLIDGEWVDAASGKTIDVVNPATGKPIGRVAHAGIADLDRALAAAQSGFEAWRKVPAHE 69 Q LI G W DAA G T+ V NP+TG +G++ + G A+ +A+ AA + AWR + A + Sbjct: 12 QALIAGSWRDAADGTTLAVSNPSTGAALGQIPNMGRAEAQQAVEAAAAALPAWRALTAAQ 71 Query: 70 RAATMRKAAALVRERADAIAQLMTQEQGKPLTEARVEVLSAADIIEWFADEGRRVYGRIV 129 RA ++ L+ E A+AQ+MT EQGKPL EA E+ AA IEWFA++G+R G I+ Sbjct: 72 RATLLKNWHRLILENKTALAQIMTAEQGKPLAEAEGEIAYAASFIEWFAEQGKRTNGEII 131 Query: 130 PPRNLGAQQTVVKEPVGPVAAFTPWNFPVNQVVRKLSAALATGCSFLVKAPEETPASPAA 189 P + V+++ VG AA TPWNFP + RK ALA GC+ ++K ETP + A Sbjct: 132 PSPGADKRLMVIRQGVGVCAAITPWNFPAAMITRKAGPALAAGCTMVIKPANETPFTALA 191 Query: 190 LLRAFVDAGVPAGVIGLVYGDPAEISSYLIPHPVIRKVTFTGSTPVGKQLASLAGLHMKR 249 + AG+P GVI +V G EI + +RK++FTGST VG+ L +K+ Sbjct: 192 MAELANQAGIPQGVINVVTGQSREIGAVFTGDERVRKLSFTGSTEVGRVLMRQCAESIKK 251 Query: 250 ATMELGGHAPVIVAEDADVALAVKAAGGAKFRNAGQVCISPTRFLVHNSIRDEFTRALVK 309 ++ELGG+AP IV +DAD+ AV+ A AKFRNAGQ C+ RF +H ++ D+F V Sbjct: 252 LSLELGGNAPFIVFDDADIDKAVEGALIAKFRNAGQTCVCVNRFYIHRAVYDQFCDKFVA 311 Query: 310 HAEGLKVGNGLEEGTTLGALANPRRLTAMASVIDNARKVGASIETGGERIGSEGNFFAPT 369 LKVG+G E G +G L N + S++D+A GA++ TGG+ GNFF PT Sbjct: 312 RVAALKVGDGNESGVQIGPLINADAGRKVQSLLDDALTRGATLLTGGKAHPLGGNFFTPT 371 Query: 370 VIANVPLDADVFNNEPFGPVAAIRGFDKLEEAIAEANRLPFGLAGYAFTRSFANVHLLTQ 429 VI +V + + E FGPVAA+ FD ++ I +AN +GLA Y ++ A + +++ Sbjct: 372 VIGDVQPGSLLLQEEIFGPVAALVKFDDEQQVIEQANNTIYGLASYFYSNDAARIWRVSE 431 Query: 430 RLEVGMLWINQPATPWPEMPFGGVKDSGYGSEGGPEALEPYLVTK 474 +LE GM+ IN PFGGVK SG G EG +E YL K Sbjct: 432 QLEYGMVGINTGLISNEVAPFGGVKQSGLGREGSEHGIEDYLEMK 476 Lambda K H 0.318 0.134 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 595 Number of extensions: 29 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 482 Length adjustment: 34 Effective length of query: 447 Effective length of database: 448 Effective search space: 200256 Effective search space used: 200256 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory