GapMind for catabolism of small carbon sources

 

L-leucine catabolism in Klebsiella variicola At-22

Best path

livF, livG, livJ, livH, livM, ilvE, ofo, liuA, liuB, liuD, liuC, liuE, atoA, atoD, atoB

Rules

Overview: Leucine degradation in GapMind is based on MetaCyc pathway L-leucine degradation I, via branched alpha-keto acid dehydrogenase (link). Other pathways for are not included here because they are not linked to sequence (link) or do not result in carbon incorporation.

39 steps (25 with candidates)

Or see definitions of steps

Step Description Best candidate 2nd candidate
livF L-leucine ABC transporter, ATPase component 1 (LivF/BraG) KVAR_RS01410 KVAR_RS09630
livG L-leucine ABC transporter, ATPase component 2 (LivG/BraF) KVAR_RS01405 KVAR_RS09625
livJ L-leucine ABC transporter, substrate-binding component (LivJ/LivK/BraC/BraC3) KVAR_RS01375 KVAR_RS01390
livH L-leucine ABC transporter, permease component 1 (LivH/BraD) KVAR_RS01395 KVAR_RS20285
livM L-leucine ABC transporter, permease component 2 (LivM/BraE) KVAR_RS01400 KVAR_RS09620
ilvE L-leucine transaminase KVAR_RS03370 KVAR_RS14575
ofo branched-chain alpha-ketoacid:ferredoxin oxidoreductase, fused
liuA isovaleryl-CoA dehydrogenase KVAR_RS23305
liuB 3-methylcrotonyl-CoA carboxylase, alpha (biotin-containing) subunit KVAR_RS12790 KVAR_RS02155
liuD 3-methylcrotonyl-CoA carboxylase, beta subunit
liuC 3-methylglutaconyl-CoA hydratase KVAR_RS14360 KVAR_RS06705
liuE hydroxymethylglutaryl-CoA lyase
atoA acetoacetyl-CoA transferase, A subunit KVAR_RS11075 KVAR_RS13990
atoD acetoacetyl-CoA transferase, B subunit KVAR_RS11070 KVAR_RS13985
atoB acetyl-CoA C-acetyltransferase KVAR_RS04020 KVAR_RS11065
Alternative steps:
aacS acetoacetyl-CoA synthetase KVAR_RS04140
AAP1 L-leucine permease AAP1
aapJ ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), substrate-binding component AapJ
aapM ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), permease component 2 (AapM) KVAR_RS08520 KVAR_RS20325
aapP ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), ATPase component AapP KVAR_RS18345 KVAR_RS20415
aapQ ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), permease component 1 (AapQ)
Bap2 L-leucine permease Bap2 KVAR_RS07425 KVAR_RS19070
bcaP L-leucine uptake transporter BcaP
bkdA branched-chain alpha-ketoacid dehydrogenase, E1 component alpha subunit KVAR_RS20495
bkdB branched-chain alpha-ketoacid dehydrogenase, E1 component beta subunit KVAR_RS20500
bkdC branched-chain alpha-ketoacid dehydrogenase, E2 component KVAR_RS21250 KVAR_RS20505
brnQ L-leucine:Na+ symporter BrnQ/BraB KVAR_RS20095
leuT L-leucine:Na+ symporter LeuT
lpd branched-chain alpha-ketoacid dehydrogenase, E3 component KVAR_RS21245 KVAR_RS20510
natA L-leucine ABC transporter, ATPase component 1 (NatA) KVAR_RS01405 KVAR_RS20295
natB L-leucine ABC transporter, substrate-binding component NatB
natC L-leucine ABC transporter, permease component 1 (NatC) KVAR_RS20290
natD L-leucine ABC transporter, permease component 2 (NatD) KVAR_RS20285 KVAR_RS01395
natE L-leucine ABC transporter, ATPase component 2 (NatE) KVAR_RS01410 KVAR_RS20300
ofoA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit OfoA
ofoB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit OfoB
vorA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit VorA
vorB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit VorB
vorC branched-chain alpha-ketoacid:ferredoxin oxidoreductase, gamma subunit VorC

Confidence: high confidence medium confidence low confidence
transporter – transporters and PTS systems are shaded because predicting their specificity is particularly challenging.

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory