GapMind for catabolism of small carbon sources

 

D-mannose catabolism in Klebsiella variicola At-22

Best path

HSERO_RS03635, HSERO_RS03640, HSERO_RS03645, mannokinase, manA

Rules

Overview: Mannose utilization in GapMind is based on MetaCyc pathways D-mannose degradation I via a PTS system (link), pathway II via mannose kinase (link), or conversion to fructose by mannose isomerase.

32 steps (24 with candidates)

Or see definitions of steps

Step Description Best candidate 2nd candidate
HSERO_RS03635 mannose ABC transporter, substrate-binding component KVAR_RS23755 KVAR_RS25415
HSERO_RS03640 mannose ABC transporter, ATPase component KVAR_RS23745 KVAR_RS25425
HSERO_RS03645 mannose ABC transporter, permease component KVAR_RS23750 KVAR_RS25420
mannokinase D-mannose kinase KVAR_RS20120 KVAR_RS04960
manA mannose-6-phosphate isomerase KVAR_RS14115 KVAR_RS07885
Alternative steps:
frcA mannose ABC transporter, ATPase component FrcA KVAR_RS12945 KVAR_RS23745
frcB mannose ABC transporter, substrate-binding component FrcB KVAR_RS23755
frcC mannose ABC transporter, permease component FrcC KVAR_RS25420 KVAR_RS23750
glcP mannose:H+ symporter
glcS mannose ABC transporter, substrate-binding component GlcS
glcT mannose ABC transporter, permease component 1 (GlcT)
glcU mannose ABC transporter, permease component 2 (GlcU)
glcV mannose ABC transporter, ATPase component GlcV KVAR_RS10915 KVAR_RS17305
gluP mannose:Na+ symporter KVAR_RS04530
man-isomerase D-mannose isomerase
manMFS mannose transporter, MFS superfamily KVAR_RS02375 KVAR_RS22185
manP mannose PTS system, EII-CBA components KVAR_RS07405 KVAR_RS02765
manX mannose PTS system, EII-AB component ManX/ManL KVAR_RS09295
manY mannose PTS system, EII-C component ManY/ManM KVAR_RS09290 KVAR_RS24170
manZ mannose PTS system, EII-D component ManZ/ManN KVAR_RS09285 KVAR_RS24175
MST1 mannose:H+ symporter
scrK fructokinase KVAR_RS19205 KVAR_RS20120
STP6 mannose:H+ symporter KVAR_RS03520 KVAR_RS04040
TM1746 mannose ABC transporter, substrate-binding component KVAR_RS09965 KVAR_RS16775
TM1747 mannose ABC transporter, permease component 1 KVAR_RS09970 KVAR_RS17420
TM1748 mannose ABC transporter, permease component 2 KVAR_RS17415 KVAR_RS09975
TM1749 mannose ABC transporter, ATPase component 1 KVAR_RS09980 KVAR_RS01005
TM1750 mannose ABC transporter, ATPase component 2 KVAR_RS09985 KVAR_RS01010
TT_C0211 mannose ABC transporter, ATPase component MalK1 KVAR_RS24080 KVAR_RS19675
TT_C0326 mannose ABC transporter, permease component 2 KVAR_RS09350 KVAR_RS19660
TT_C0327 mannose ABC transporter, permease component 1
TT_C0328 mannose ABC transporter, substrate-binding component

Confidence: high confidence medium confidence low confidence
transporter – transporters and PTS systems are shaded because predicting their specificity is particularly challenging.

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory