GapMind for catabolism of small carbon sources

 

L-valine catabolism in Klebsiella variicola At-22

Best path

livF, livG, livJ, livH, livM, ofo, acdH, ech, bch, mmsB, mmsA, prpC, acnD, prpF, acn, prpB

Rules

Overview: Valine degradation in GapMind is based on MetaCyc pathway L-valine degradation I (link). The other pathways do not produce any fixed carbon and are not included.

47 steps (30 with candidates)

Or see definitions of steps

Step Description Best candidate 2nd candidate
livF L-valine ABC transporter, ATPase component 1 (LivF/BraG) KVAR_RS01410 KVAR_RS09630
livG L-valine ABC transporter, ATPase component 2 (LivG/BraF) KVAR_RS01405 KVAR_RS09625
livJ L-valine ABC transporter, substrate-binding component (LivJ/LivK/BraC/BraC3) KVAR_RS01375 KVAR_RS09610
livH L-valine ABC transporter, permease component 1 (LivH/BraD) KVAR_RS01395 KVAR_RS20285
livM L-valine ABC transporter, permease component 2 (LivM/BraE) KVAR_RS01400 KVAR_RS09620
ofo branched-chain alpha-ketoacid:ferredoxin oxidoreductase, fused
acdH isobutyryl-CoA dehydrogenase
ech (S)-3-hydroxybutanoyl-CoA hydro-lyase KVAR_RS14360 KVAR_RS14350
bch 3-hydroxyisobutyryl-CoA hydrolase KVAR_RS07040 KVAR_RS14355
mmsB 3-hydroxyisobutyrate dehydrogenase KVAR_RS02805 KVAR_RS13605
mmsA methylmalonate-semialdehyde dehydrogenase KVAR_RS22870 KVAR_RS18825
prpC 2-methylcitrate synthase KVAR_RS18090 KVAR_RS19355
acnD 2-methylcitrate dehydratase (2-methyl-trans-aconitate forming) KVAR_RS15100
prpF methylaconitate isomerase KVAR_RS21770 KVAR_RS00235
acn (2R,3S)-2-methylcitrate dehydratase KVAR_RS21225 KVAR_RS15100
prpB 2-methylisocitrate lyase KVAR_RS24210
Alternative steps:
Bap2 L-valine permease Bap2 KVAR_RS07425 KVAR_RS19070
bcaP L-valine uptake transporter BcaP/CitA
bkdA branched-chain alpha-ketoacid dehydrogenase, E1 component alpha subunit KVAR_RS20495
bkdB branched-chain alpha-ketoacid dehydrogenase, E1 component beta subunit KVAR_RS20500
bkdC branched-chain alpha-ketoacid dehydrogenase, E2 component KVAR_RS21250 KVAR_RS20505
brnQ L-valine:cation symporter BrnQ/BraZ/BraB KVAR_RS20095
dddA 3-hydroxypropionate dehydrogenase KVAR_RS18830
epi methylmalonyl-CoA epimerase
hpcD 3-hydroxypropionyl-CoA dehydratase KVAR_RS14360 KVAR_RS06705
iolA malonate semialdehyde dehydrogenase (CoA-acylating) KVAR_RS22870 KVAR_RS18825
lpd branched-chain alpha-ketoacid dehydrogenase, E3 component KVAR_RS21245 KVAR_RS20510
mcm-large methylmalonyl-CoA mutase, large (catalytic) subunit
mcm-small methylmalonyl-CoA mutase, small (adenosylcobamide-binding) subunit
mcmA methylmalonyl-CoA mutase, fused catalytic and adenosylcobamide-binding components
natA L-valine ABC transporter, ATPase component 1 (NatA) KVAR_RS01405 KVAR_RS20295
natB L-valine ABC transporter, substrate-binding component NatB
natC L-valine ABC transporter, permease component 1 (NatC) KVAR_RS20290
natD L-valine ABC transporter, permease component 2 (NatD) KVAR_RS20285 KVAR_RS01395
natE L-valine ABC transporter, ATPase component 2 (NatE) KVAR_RS01410 KVAR_RS20300
ofoA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit OfoA
ofoB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit OfoB
pccA propionyl-CoA carboxylase, alpha subunit KVAR_RS02155 KVAR_RS20480
pccA1 propionyl-CoA carboxylase, biotin carboxyl carrier subunit KVAR_RS02155 KVAR_RS20480
pccA2 propionyl-CoA carboxylase, biotin carboxylase subunit KVAR_RS21720 KVAR_RS02300
pccB propionyl-CoA carboxylase, beta subunit
pco propanyl-CoA oxidase
phtJ L-valine uptake permease PhtJ
prpD 2-methylcitrate dehydratase
vorA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit VorA
vorB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit VorB
vorC branched-chain alpha-ketoacid:ferredoxin oxidoreductase, gamma subunit VorC

Confidence: high confidence medium confidence low confidence
transporter – transporters and PTS systems are shaded because predicting their specificity is particularly challenging.

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory