Align Probable glycine dehydrogenase (decarboxylating) subunit 1; EC 1.4.4.2; Glycine cleavage system P-protein subunit 1; Glycine decarboxylase subunit 1; Glycine dehydrogenase (aminomethyl-transferring) subunit 1 (uncharacterized)
to candidate WP_012991979.1 THAL_RS04795 aminomethyl-transferring glycine dehydrogenase subunit GcvPA
Query= curated2:O67193 (439 letters) >NCBI__GCF_000025605.1:WP_012991979.1 Length = 437 Score = 583 bits (1502), Expect = e-171 Identities = 291/437 (66%), Positives = 351/437 (80%), Gaps = 7/437 (1%) Query: 3 YIPHSEEETKEILSKLGLESLEDLFSHIPKELFAKDFSFPEPKSEEELRRIFERACEDTE 62 YIPHSE ET++IL LGL LEDLFSHI L + P P SEEELRR F+ + + Sbjct: 2 YIPHSERETEDILKLLGLSKLEDLFSHIDASLLSPS-RLPPPMSEEELRRYFKETSQQNK 60 Query: 63 LPLYFIGAGAYDRIIPSVIWQILSRGEFLTPYTPYQAEASQGTLQAIFEYQSLICELTGM 122 + F G G YDRI+PSVIWQIL+RGEFLT YTPYQ EASQGTLQAIFEYQ+L+C+LTGM Sbjct: 61 PLVCFAGYGVYDRIVPSVIWQILNRGEFLTAYTPYQPEASQGTLQAIFEYQTLVCQLTGM 120 Query: 123 DVANASMYDGASALAEAVLMARAIKGKGDTVVLSKALNPLYRRTVKTYLRGYEDKIVEVP 182 +VANASMYDGASALAEAVLMARA++GKG VV+S+ ++PLYR+ V+TYL GY D+IV+VP Sbjct: 121 EVANASMYDGASALAEAVLMARAVRGKGRRVVISEGVHPLYRKVVETYLMGYRDEIVQVP 180 Query: 183 YTEEGTTDLNNLEEVLKESEVHALAVQYPNFFGFVEPLKEIGELCKKYEVPFVVFVDPIA 242 EEG T L+ LE+ LK+ E HA+ +QYPNF GFVE L+++GEL ++Y VP VV DPIA Sbjct: 181 VNEEGYTRLDLLEDALKDQEAHAVVLQYPNFLGFVEDLRKVGELTQRYRVPLVVVADPIA 240 Query: 243 LSILKPPAEFGADIVVGEGQQMGIPLSFGGPYVGFFATKKEHVRKMPGRLVGMGEDIEGK 302 L+ILKPP + GADIVVGE Q MG+ +++GGPY GFFATK+E+VR+MPGRLVGMGEDIEGK Sbjct: 241 LAILKPPGQMGADIVVGEAQPMGMFMNYGGPYAGFFATKQEYVRRMPGRLVGMGEDIEGK 300 Query: 303 RAFTLVLQTREQHIRRERATSNICTNQNLMALANLLYMVLLGKEGMKKVAVQSLSKALYF 362 RAF LVLQTREQHIRRERATSNICTNQNLMA+A+L+YMVLLGKEGM++VA+QSLSKALY Sbjct: 301 RAFLLVLQTREQHIRRERATSNICTNQNLMAMASLIYMVLLGKEGMRQVALQSLSKALYL 360 Query: 363 KKELMKKGFEEVFTGKHLWEFPLRHESLKAIYRKLLKEKIVLGLPLDRFYEDLKNTTLIA 422 KK L+ GF+EV+ G+HLWEFPLRH + LLKE +LG+PL +T L+A Sbjct: 361 KKRLLDLGFQEVYKGRHLWEFPLRHPQAMKLRNALLKEGFLLGVPL------RDDTLLLA 414 Query: 423 VTEKRTKEEIDSVLALL 439 VTEKRTKEE+D + L+ Sbjct: 415 VTEKRTKEEMDKLCHLI 431 Lambda K H 0.319 0.137 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 626 Number of extensions: 23 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 439 Length of database: 437 Length adjustment: 32 Effective length of query: 407 Effective length of database: 405 Effective search space: 164835 Effective search space used: 164835 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory