GapMind for catabolism of small carbon sources

 

Alignments for a candidate for ech in Frankia alni ACN14a

Align 3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.157); 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35); short-chain-enoyl-CoA hydratase (EC 4.2.1.150) (characterized)
to candidate WP_083866923.1 FRAAL_RS25765 3-hydroxybutyryl-CoA dehydrogenase

Query= BRENDA::A4YDS4
         (651 letters)



>NCBI__GCF_000058485.1:WP_083866923.1
          Length = 685

 Score =  156 bits (394), Expect = 3e-42
 Identities = 108/323 (33%), Positives = 164/323 (50%), Gaps = 4/323 (1%)

Query: 2   KVTVIGSGVMGHGIAELAAIAGNEVWMNDISTEILQQAMERIKWSLSKLRESGSLKEGVE 61
           +V V+G G MG GIAE+ A +G +V   +  T+ L++A  RI+ SL +    G L +   
Sbjct: 45  RVGVVGLGTMGAGIAEVLAGSGLDVVGVERDTDALRRARGRIEHSLERAARHGRLADAAR 104

Query: 62  -QVLARIHPETDQAQALKGSDFVIEAVKEDLELKRTIFRNAEAHASPSAVLATNTSSLPI 120
            ++L R+   T+ A A+   D VIEA+ E L+ K  +F   +    P+ VLATNTSSL +
Sbjct: 105 GELLGRLSLGTELA-AVADCDLVIEAIDERLDAKTALFARLDEVCLPATVLATNTSSLSV 163

Query: 121 SEIASVLKSPQRVVGMHFFNPPVLMPLVEIVRGKDTSDEVVKTTAEMAKSMNKETIVVKD 180
           +E+A+      RV+GMH+FNP  +M LVE+VR   T  + +     +  ++ K  +V  D
Sbjct: 164 TELAAGTGRSARVLGMHWFNPAPVMGLVEVVRTVVTDADALAAVVSLVGAVGKTAVVAAD 223

Query: 181 VPGFFVNRVLLRIMEAGCYLVEKGIASIQEVDSSAIEELGFPMGVFLLADYTGLDIGYSV 240
             GF VN +L   +     +VE   A+ ++VD++     G PMG   L D  GLD  +++
Sbjct: 224 RAGFIVNALLFGYLNNAVRMVEARFATREDVDAAMRLGCGHPMGPLALLDLIGLDAAHAI 283

Query: 241 WKAV--TARGFKAFPCSSTEKLVSQGKLGVKSGSGYYQYPSPGKFVRPTLPSTSKKLGRY 298
             ++    R     P     +LV+ G LG K+G G+Y YP+      P      K  G  
Sbjct: 284 LASMYDQTRDHLHAPAPLLGQLVAAGLLGRKTGRGFYTYPATDAPDVPPEGPGRKDPGAV 343

Query: 299 LISPAVNEVSYLLREGIVGKDDA 321
               AV E   +   G VG+  A
Sbjct: 344 GEPGAVGEPGAVGESGAVGESGA 366



 Score =  150 bits (380), Expect = 1e-40
 Identities = 94/280 (33%), Positives = 150/280 (53%), Gaps = 8/280 (2%)

Query: 3   VTVIGSGVMGHGIAELAAIAGNEVWMNDISTEILQQAMERIKWSLSKLRESGSLKEGV-E 61
           V ++GSG M  GIAE+ A +G++V +     +    A +R+  SL+     G L +   +
Sbjct: 406 VGIVGSGTMARGIAEVLARSGHDVILRARRPDAADAAHDRVAASLAAAVAKGRLSDDDRD 465

Query: 62  QVLARIHPETDQAQALKGSDFVIEAVKEDLELKRTIFRNAEAHASPSAVLATNTSSLPIS 121
             L R+   TD  + L G D ++EAV EDL +KR +F + +  A P AVLAT TS LP+ 
Sbjct: 466 AALGRLRVTTDLGE-LGGCDVLLEAVVEDLAVKRELFTDLDKVARPGAVLATTTSCLPVV 524

Query: 122 EIASVLKSPQRVVGMHFFNPPVLMPLVEIVRGKDTSDEVVKTTAEMAKSMNKETIVVKDV 181
           E A+  + P+ VVGMH+FNP  +M LVE+V    T      T   +A++  +  +   D 
Sbjct: 525 ECATATRRPEAVVGMHWFNPAQVMRLVEVVPTVLTGAGATATVTALARAAGRHPVQCADR 584

Query: 182 PGFFVNRVLLRIMEAGCYLVEKGIASIQEVDSSAIEELGFPMGVFLLADYTGLDIGYSVW 241
            GF VN +L   +     +++   A+I+++D++     G PMG F LAD  GLD+  ++ 
Sbjct: 585 AGFIVNALLFPYLNDAVKMLQANYATIEDIDTAMTVGCGHPMGPFALADVVGLDVTLAIT 644

Query: 242 KAVTAR----GFKAFPCSSTEKLVSQGKLGVKSGSGYYQY 277
           +++  +    G+   P    E LV    LG K+G G++ +
Sbjct: 645 RSLYEQFREPGYA--PAPLLEHLVRARFLGRKTGRGFHAH 682



 Score = 57.4 bits (137), Expect = 2e-12
 Identities = 29/92 (31%), Positives = 49/92 (53%)

Query: 299 LISPAVNEVSYLLREGIVGKDDAEKGCVLGLGLPKGILSYADEIGIDVVVNTLEEMRQTS 358
           L+ P +N+   +L+      +D +    +G G P G  + AD +G+DV +     + +  
Sbjct: 592 LLFPYLNDAVKMLQANYATIEDIDTAMTVGCGHPMGPFALADVVGLDVTLAITRSLYEQF 651

Query: 359 GMDHYSPDPLLLSMVKEGKLGRKSGQGFHTYA 390
               Y+P PLL  +V+   LGRK+G+GFH +A
Sbjct: 652 REPGYAPAPLLEHLVRARFLGRKTGRGFHAHA 683



 Score = 53.5 bits (127), Expect = 3e-11
 Identities = 30/91 (32%), Positives = 46/91 (50%)

Query: 304 VNEVSYLLREGIVGKDDAEKGCVLGLGLPKGILSYADEIGIDVVVNTLEEMRQTSGMDHY 363
           +N    ++      ++D +    LG G P G L+  D IG+D     L  M   +    +
Sbjct: 237 LNNAVRMVEARFATREDVDAAMRLGCGHPMGPLALLDLIGLDAAHAILASMYDQTRDHLH 296

Query: 364 SPDPLLLSMVKEGKLGRKSGQGFHTYAHEEA 394
           +P PLL  +V  G LGRK+G+GF+TY   +A
Sbjct: 297 APAPLLGQLVAAGLLGRKTGRGFYTYPATDA 327


Lambda     K      H
   0.316    0.134    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 969
Number of extensions: 37
Number of successful extensions: 8
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 5
Number of HSP's successfully gapped: 4
Length of query: 651
Length of database: 685
Length adjustment: 38
Effective length of query: 613
Effective length of database: 647
Effective search space:   396611
Effective search space used:   396611
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 54 (25.4 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory