GapMind for catabolism of small carbon sources

 

Potential Gaps in catabolism of small carbon sources in Paraburkholderia atlantica CCGE1002

Found 16 low-confidence and 35 medium-confidence steps on the best paths for 62 pathways.

Pathway Step Best candidate 2nd candidate
4-hydroxybenzoate pcaF: succinyl-CoA:acetyl-CoA C-succinyltransferase BC1002_RS17450 BC1002_RS33120
alanine cycA: L-alanine symporter CycA BC1002_RS11820 BC1002_RS33045
citrulline AO353_03040: ABC transporter for L-Citrulline, ATPase component BC1002_RS30535 BC1002_RS03950
citrulline AO353_03045: ABC transporter for L-Citrulline, permease component 2 BC1002_RS05545 BC1002_RS03955
citrulline AO353_03050: ABC transporter for L-Citrulline, permease component 1 BC1002_RS03960 BC1002_RS30525
citrulline AO353_03055: ABC transporter for L-Citrulline, periplasmic substrate-binding component BC1002_RS17340 BC1002_RS03965
citrulline arcC: carbamate kinase
citrulline aruG: ornithine/arginine N-succinyltransferase subunit AruAII (AruG) BC1002_RS05570 BC1002_RS05565
D-serine cycA: D-serine:H+ symporter CycA BC1002_RS33045 BC1002_RS11820
D-serine dsdA: D-serine ammonia-lyase BC1002_RS11650 BC1002_RS23935
deoxyinosine deoB: phosphopentomutase BC1002_RS10435
deoxyinosine deoC: deoxyribose-5-phosphate aldolase
deoxyinosine deoD: deoxyinosine phosphorylase
deoxyinosine nupC: deoxyinosine:H+ symporter NupC
deoxyribonate deoxyribonate-dehyd: 2-deoxy-D-ribonate 3-dehydrogenase BC1002_RS24635 BC1002_RS06085
deoxyribonate deoxyribonate-transport: 2-deoxy-D-ribonate transporter BC1002_RS32050 BC1002_RS23405
deoxyribose deoxyribonate-dehyd: 2-deoxy-D-ribonate 3-dehydrogenase BC1002_RS24635 BC1002_RS06085
deoxyribose deoxyribonate-transport: 2-deoxy-D-ribonate transporter BC1002_RS32050 BC1002_RS23405
deoxyribose drdehyd-alpha: 2-deoxy-D-ribose dehydrogenase, alpha subunit BC1002_RS18825 BC1002_RS26250
deoxyribose drdehyd-beta: 2-deoxy-D-ribose dehydrogenase, beta subunit BC1002_RS18830 BC1002_RS26245
glucosamine gamP: glucosamine PTS system, EII-CBA components (GamP/NagE) BC1002_RS01450 BC1002_RS27325
glucose-6-P uhpT: glucose-6-phosphate:phosphate antiporter
glycerol glpF: glycerol facilitator glpF BC1002_RS15325 BC1002_RS01760
histidine PA5503: L-histidine ABC transporter, ATPase component BC1002_RS11085 BC1002_RS28880
histidine PA5505: L-histidine ABC transporter, substrate-binding component BC1002_RS11075 BC1002_RS01420
lactose lacP: lactose permease LacP
lysine davT: 5-aminovalerate aminotransferase BC1002_RS05560 BC1002_RS11895
lysine hisM: L-lysine ABC transporter, permease component 1 (HisM) BC1002_RS03955 BC1002_RS05545
lysine hisP: L-lysine ABC transporter, ATPase component HisP BC1002_RS30535 BC1002_RS05550
lysine hisQ: L-lysine ABC transporter, permease component 2 (HisQ) BC1002_RS03960 BC1002_RS30525
lysine patA: cadaverine aminotransferase BC1002_RS05560 BC1002_RS00965
lysine patD: 5-aminopentanal dehydrogenase BC1002_RS30590 BC1002_RS07840
maltose susB: alpha-glucosidase (maltase) BC1002_RS32085 BC1002_RS25875
mannitol mt2d: mannitol 2-dehydrogenase BC1002_RS12485 BC1002_RS12460
mannitol mtlE: polyol ABC transporter, substrate-binding component MtlE/SmoE BC1002_RS12525
mannitol mtlF: polyol ABC transporter, permease component 1 (MtlF/SmoF) BC1002_RS12520 BC1002_RS23845
mannitol mtlG: polyol ABC transporter, permease component 2 (MtlG/SmoG) BC1002_RS12515 BC1002_RS28095
mannitol mtlK: polyol ABC transporter, ATP component MtlK/SmoG BC1002_RS12505 BC1002_RS21755
rhamnose LRA2: L-rhamnono-gamma-lactonase
rhamnose rhaP: L-rhamnose ABC transporter, permease component 1 (RhaP) BC1002_RS21100 BC1002_RS21095
rhamnose rhaQ: L-rhamnose ABC transporter, permease component 2 (RhaQ) BC1002_RS21095 BC1002_RS12465
rhamnose rhaT': L-rhamnose ABC transporter, ATPase component RhaT BC1002_RS21105 BC1002_RS23905
sucrose ams: sucrose hydrolase (invertase) BC1002_RS32085 BC1002_RS25875
threonine snatA: L-threonine transporter snatA BC1002_RS13485
thymidine deoA: thymidine phosphorylase DeoA BC1002_RS21615
thymidine deoB: phosphopentomutase BC1002_RS10435
thymidine deoC: deoxyribose-5-phosphate aldolase
thymidine nupG: thymidine permease NupG/XapB
valine livH: L-valine ABC transporter, permease component 1 (LivH/BraD) BC1002_RS11925 BC1002_RS34550
valine livJ: L-valine ABC transporter, substrate-binding component (LivJ/LivK/BraC/BraC3) BC1002_RS15500 BC1002_RS00535
valine livM: L-valine ABC transporter, permease component 2 (LivM/BraE) BC1002_RS34545 BC1002_RS11920

Confidence: high confidence medium confidence low confidence

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory