GapMind for catabolism of small carbon sources

 

Alignments for a candidate for lysN in Nitratifractor salsuginis DSM 16511

Align 2-aminoadipate transaminase (EC 2.6.1.39) (characterized)
to candidate WP_013554564.1 NITSA_RS08235 aspartate aminotransferase family protein

Query= reanno::Putida:PP_4108
         (416 letters)



>NCBI__GCF_000186245.1:WP_013554564.1
          Length = 395

 Score =  181 bits (460), Expect = 3e-50
 Identities = 133/403 (33%), Positives = 203/403 (50%), Gaps = 41/403 (10%)

Query: 21  GRNAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRLTHYAFNAAPHGPYLAL 80
           G  A+++D  G+ +IDF  GIGV ++GH +P + EA+  QA++L H + N     P   L
Sbjct: 26  GEGAKLYDDTGREFIDFGSGIGVCSIGHAHPKLSEALCDQASKLIHVS-NLQVIEPQARL 84

Query: 81  MEQLSQFVPVSYPLAGMLTNSGAEAAENALKVARGA------TGKRAIIAFDGGFHGRTL 134
            E++ +     Y +     NSGAEA E ALK+AR        T +  +I     FHGRT+
Sbjct: 85  AERIVKLS--GYDMRCFFGNSGAEANEAALKIARKYGETAFDTKRYKVITLKHSFHGRTI 142

Query: 135 ATLNLNGKVAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSVELAVED-VAA 193
            T+   G+   +K             PYP+    V      +++D ++    A++D   A
Sbjct: 143 TTVKATGQKEMHKPDFS---------PYPAGFAYV------ESIDAIYD---AIDDETVA 184

Query: 194 FIFEPVQGEGGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFAFPRLGIEPD 253
            + E VQGEGG    D    Q L +F   R +L+I+DE+Q+G  RTG+  A     IEPD
Sbjct: 185 VMIELVQGEGGVQPFDKGEVQDLAKFLRSRDLLLIVDEVQTGVYRTGEFLASQLYEIEPD 244

Query: 254 LLLLAKSIAGGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASLAQM-TDENLA 312
           ++ LAK + GG+P+G  + R  L      G  G T+ GN +S  A L  L  +  +++  
Sbjct: 245 IITLAKGLGGGVPIGVAMTR--LKEIFKPGDHGSTFGGNYLSTRAGLTVLEVLKAEQDRG 302

Query: 313 TWGERQEQAIVSRYERWKASGLSPYIGRLTGVGAMRGIEFANADGSPAPAQLAKVMEAAR 372
              ER E  I S Y +  A  L  Y     G+G MRG+   +A+   A      +++AA 
Sbjct: 303 ALAERIE--IFSSYLKGLAERLPEYFTEAVGLGLMRGLRCVDAEIQGA------ILKAAF 354

Query: 373 ARGLLLMPSGKARHIIRLLAPLTIEAEVLEEGLDILEQCLAEL 415
             GL+++ +G  R+ +R L PLTI  + ++EG    E+ LA L
Sbjct: 355 DEGLIVLKAG--RNTVRFLPPLTITRDEIDEGFKRFEKALATL 395


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 376
Number of extensions: 19
Number of successful extensions: 7
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 395
Length adjustment: 31
Effective length of query: 385
Effective length of database: 364
Effective search space:   140140
Effective search space used:   140140
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory