Align 4-trimethylaminobutyraldehyde dehydrogenase; TMABA-DH; TMABADH; Aldehyde dehydrogenase family 9 member A1; Gamma-aminobutyraldehyde dehydrogenase; EC 1.2.1.47; EC 1.2.1.3; EC 1.2.1.19 (characterized)
to candidate WP_011320250.1 AVA_RS17895 NAD-dependent succinate-semialdehyde dehydrogenase
Query= SwissProt::Q9JLJ3 (494 letters) >NCBI__GCF_000204075.1:WP_011320250.1 Length = 455 Score = 239 bits (609), Expect = 2e-67 Identities = 152/453 (33%), Positives = 220/453 (48%), Gaps = 5/453 (1%) Query: 34 PATGREIATFKCSGEKEVNLAVENAKAAFKIWSKKSGLERCQVLLEAARIIKERRDEIAI 93 PATG + TF+ + E+ ++ A AF+ + S ER Q L AA I+++ + + A Sbjct: 8 PATGETLKTFEPLNDAEIAAKLDLADQAFEKYRHTSFAERSQALQAAANILEQEKADFAK 67 Query: 94 METINNGKSIFEARLDVDTSWQCLEYYAGLAASMAGEHIQLPGGSFGYTRREPLGVCLGI 153 + T+ GK A +V+ YYA AA + S + R +PLG+ L + Sbjct: 68 LMTLEMGKPYKAAIAEVEKCAAVCRYYAENAADFLADVSVKTDASHSFVRYQPLGIILAV 127 Query: 154 GAWNYPFQIACWKSAPALACGNAMIFKPSPFTPVSALLLAEIYTKAGAPNGLFNVVQGGA 213 WN+PF +APAL GN + K + P AL + +I +AG P G+F + GA Sbjct: 128 MPWNFPFWQVFRFAAPALMAGNVGLLKHASNVPQCALAIEDIIHRAGFPGGVFQTLLIGA 187 Query: 214 ATGQFLCQHRDVAKVSFTGSVPTGMKIMEMAAKGIKPITLELGGKSPLIIFSDCNMKNAV 273 A L V + TGS P G + A K IK LELGG P I+ +++ A Sbjct: 188 AKVADLMADERVKAATLTGSEPAGASLAAAAGKQIKKTVLELGGSDPFIVLESADVEAAA 247 Query: 274 KGALLANFLTQGQVCCNGTRVFVQKEIADAFTKEVVRQTQRIKIGDPLLEDTRMGPLINA 333 A A L GQ C R V + IAD F K ++ + +KIGDPL DT +GPL Sbjct: 248 ATATSARMLNNGQSCIAAKRFIVAEAIADQFEKLLLEKFTALKIGDPLHPDTDLGPLATP 307 Query: 334 PHLERVLGFVRSAKEQGATVLCGGEPYAPEDPKLKHGYYMTPCILTNCTDDMTCVKEEIF 393 L+ + V++A + G VL GG P A + G + I+ + D +EE F Sbjct: 308 DILQDLDQQVQTAVKSGGKVLTGGYPLAD-----RPGNFYPATIIIDIPVDQPIAQEEFF 362 Query: 394 GPVMSILTFETEAEVLERANDTTFGLAAGVFTRDIQRAHRVAAELQAGTCYINNYNVSPV 453 GPV + ++ AN T FGL A +T + Q R+ +E++AG +IN S Sbjct: 363 GPVALLFRVPDIDTAIQLANATPFGLGASAWTNNDQERDRLISEIEAGAVFINGLVKSDP 422 Query: 454 ELPFGGYKKSGFGRENGRVTIEYYSQLKTVCVE 486 LPFGG K+SG+GRE I + +KTV V+ Sbjct: 423 RLPFGGIKRSGYGRELSIQGIHEFVNVKTVWVK 455 Lambda K H 0.319 0.136 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 538 Number of extensions: 24 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 494 Length of database: 455 Length adjustment: 33 Effective length of query: 461 Effective length of database: 422 Effective search space: 194542 Effective search space used: 194542 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory