Align Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized)
to candidate WP_027457611.1 K420_RS0108110 formate-dependent phosphoribosylglycinamide formyltransferase
Query= SwissProt::P33221 (392 letters) >NCBI__GCF_000519045.1:WP_027457611.1 Length = 399 Score = 441 bits (1135), Expect = e-128 Identities = 239/394 (60%), Positives = 284/394 (72%), Gaps = 9/394 (2%) Query: 4 LGTALRPAATRVMLLGSGELGKEVAIECQRLGVEVIAVDRYADAPAMHVAHRSHVINMLD 63 +GT L P+A RVMLLG+GELGKEV I QRLGVEVIAVDRYA AP VAHR+HVI+M D Sbjct: 3 IGTPLSPSALRVMLLGAGELGKEVIIALQRLGVEVIAVDRYASAPGHQVAHRAHVISMTD 62 Query: 64 GDALRRVVELEKPHYIVPEIEAIATDMLIQLEEEGL-NVVPCARATKLTMNREGIRRLAA 122 G ALR+++E E+PH IVPEIEAIATD L+ +E EGL V+P ARA KLTMNREGIRRLAA Sbjct: 63 GAALRQLIEQERPHLIVPEIEAIATDTLVDIEREGLAEVIPTARAAKLTMNREGIRRLAA 122 Query: 123 EELQLPTSTYRFADSESLFREAV-ADIGYPCIVKPVMSSSGKGQTFIRSAEQLAQAWKYA 181 EEL LPTS YRFADS + + A+ + IGYPCIVKP MSSSGKGQ+ +R + + +AW YA Sbjct: 123 EELGLPTSPYRFADSLAELQAAIDSSIGYPCIVKPTMSSSGKGQSLLRGPDDVQKAWDYA 182 Query: 182 QQGGRAGAGRVIVEGVVKFDFEITLLTVSAVDGV-----HFCAPVGHRQEDGDYRESWQP 236 G R GRVIVEG + FD+EITLLTV A + HFC P+GH+Q GDY ESWQP Sbjct: 183 ASGSRVNQGRVIVEGFIDFDYEITLLTVRARNAAGEVVTHFCEPIGHQQVAGDYVESWQP 242 Query: 237 QQMSPLALERAQEIARKVVLALGGYGLFGVELFVCGDEVIFSEVSPRPHDTGMVTLISQD 296 Q MSP A +RAQ+IA V LGG G+FGVE FV GD V FSEVSPRPHDTG+VTL SQ Sbjct: 243 QAMSPTARQRAQDIAAAVTGNLGGRGIFGVEFFVKGDMVWFSEVSPRPHDTGLVTLCSQR 302 Query: 297 LSEFALHVRAFLGLPVGGIRQYGPAASAVILPQLTSQNVTFDNVQNAVGAD-LQIRLFGK 355 SEF LH RA LGLPV + P ASAVI + + F+ + A+ +RLFGK Sbjct: 303 FSEFELHARAILGLPVDTTLR-EPGASAVIYGGMAESGIAFEGLAEALAVPRSDLRLFGK 361 Query: 356 PEIDGSRRLGVALATAESVVDAIERAKHAAGQVK 389 PE RR+GVA+A E+ +A +RA+ AAG+V+ Sbjct: 362 PESFTKRRMGVAVANGETTEEARQRARLAAGKVR 395 Lambda K H 0.320 0.136 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 447 Number of extensions: 20 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 392 Length of database: 399 Length adjustment: 31 Effective length of query: 361 Effective length of database: 368 Effective search space: 132848 Effective search space used: 132848 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory