GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Oleispira antarctica RB-8

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; IP210; Iron-responsive protein-like; IRP-like; Major iron-containing protein; MICP; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate WP_046008325.1 OLEAN_RS05010 aconitate hydratase AcnA

Query= SwissProt::P37032
         (891 letters)



>NCBI__GCF_000967895.1:WP_046008325.1
          Length = 897

 Score = 1106 bits (2861), Expect = 0.0
 Identities = 563/890 (63%), Positives = 674/890 (75%), Gaps = 4/890 (0%)

Query: 1   MKVGQDSLSTKSQLTVDGKTYNYYSLKEAENKHFKGINRLPYSLKVLLENLLRFEDGNTV 60
           MK   ++ +T S LTV+ K + Y+++   E    K I RLP ++K+LLEN+LR EDG + 
Sbjct: 1   MKNSDNTFNTLSTLTVNDKPFRYFAINGGELASHKTIARLPLTIKILLENMLRNEDGLSC 60

Query: 61  TTKDIKAIADWLHNKTSQHEIAFRPTRVLMQDFTGVPAVVDLAAMRTAIVKMGGNADKIS 120
              DI+A+A     K S+ EIA+ P RVLMQDFTGVPAVVDLAAMR A+VK G +   I+
Sbjct: 61  RRDDIEALAA-SGGKASEQEIAYHPARVLMQDFTGVPAVVDLAAMRDALVKRGIDPQTIN 119

Query: 121 PLSPVDLVIDHSVMVDKFASADALEVNTKIEIERNKERYEFLRWGQKAFSNFQVVPPGTG 180
           PL+ VDLVIDHS+ +DKFAS  A E N  IE++RN ERY+FL+WGQ AF+NF VVPPGTG
Sbjct: 120 PLTKVDLVIDHSISIDKFASESAFEENVAIEMQRNHERYQFLKWGQSAFANFSVVPPGTG 179

Query: 181 ICHQVNLEYLGKTVWNSENDGQLYAYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAML 240
           ICHQVNLEYL K VW  + DG+ +AYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAA+L
Sbjct: 180 ICHQVNLEYLAKVVWTEDKDGERFAYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAIL 239

Query: 241 GQPVSMLIPEVIGFKLSGKLKEGITATDLVLTVTQMLRKKGVVGKFVEFYGPGLNDLPLA 300
           GQP+SMLIP+V+G +L+GKL EGITATDLVLTV +MLR+ GVVGKFVEFYG GL+ LPLA
Sbjct: 240 GQPISMLIPDVVGVELTGKLLEGITATDLVLTVVEMLREYGVVGKFVEFYGAGLDHLPLA 299

Query: 301 DRATISNMAPEYGATCGFFPVDKETIKYLELTGRDKHTIALVEAYAKAQGMWYDKDNEEP 360
           DRATI+NMAPEYGATCGFFPVDK+TI YL L+GRD+  I LVEAY KAQG+W D+    P
Sbjct: 300 DRATIANMAPEYGATCGFFPVDKQTINYLRLSGRDEEQIELVEAYCKAQGLWRDEHFLVP 359

Query: 361 VFTDSLHLDLGSVEPSLAGPKRPQDKVNLSSLPVEFNNFLIEVGKEKEKEKTFAVKNKDF 420
            F+ +L LDL ++ PSLAGPKRPQD+V ++ L       +   GK K+    + +   + 
Sbjct: 360 DFSATLRLDLTTIVPSLAGPKRPQDRVPVTGLKTAVAGSIELAGKAKQLNTEYPLAGSEV 419

Query: 421 QMKHGHVVIAAITSCTNTSNPSVLMAAGLVAKKAIEKGLQRKPWVKSSLAPGSKVVTDYL 480
            M HG VVIAAITSCTNTSNP+V++AAGLVA+ A+ KGLQRK WVKSSLAPGSKVVT+YL
Sbjct: 420 AMHHGDVVIAAITSCTNTSNPAVMIAAGLVARNALAKGLQRKSWVKSSLAPGSKVVTEYL 479

Query: 481 RHAGLQTYLDQLGFNLVGYGCTTCIGNSGPLPDDISHCVAEHDLVVSSVLSGNRNFEGRV 540
           + A LQ  LD+LGFNLVGYGCTTCIGNSGPLP+ +   +A +DL+VSSVLSGNRNFEGR+
Sbjct: 480 QQAKLQEPLDKLGFNLVGYGCTTCIGNSGPLPEVVEATIAANDLIVSSVLSGNRNFEGRI 539

Query: 541 HPQVRANWLASPPLVVAYALCGTTCSDLSREPIGQDKEGNDVYLKDIWPSNEEIAAEVAK 600
           HP V+ NWLASPPLVVAYAL GTT  DLSR+ +G D  G  VYLKDIWP+N EIA  V  
Sbjct: 540 HPLVQDNWLASPPLVVAYALAGTTRIDLSRDSLGNDDNGQPVYLKDIWPTNVEIAELVQA 599

Query: 601 VSGTMFRKEYAEVFKGDAHWQAIQTSSGQTYEWNPDSTYIQHPPFFENLSLKPEPLKPIK 660
           ++ TMF KEY+ VF GD  W+AI + +G+TY++  DSTYIQ PPFFE           I 
Sbjct: 600 ITSTMFNKEYSAVFDGDDRWRAIDSGNGKTYKFTEDSTYIQLPPFFEERYRGKS--SSII 657

Query: 661 QAYVLALFGDSITTDHISPAGSIKASSPAGLYLKSKGVDEKDFNSYGSRRGNHEVMMRGT 720
           +A +LA+ GDS+TTDHISPAG+I   SPA  YL+++G+ EKDFNSYGSRRGNH+VM+RGT
Sbjct: 658 KAPMLAMLGDSVTTDHISPAGAIPQDSPASQYLRAQGIAEKDFNSYGSRRGNHKVMVRGT 717

Query: 721 FANIRIRNEMTPGQEGGVTRYVPTGETMSIYDAAMRYQENQQDLVIIAGKEYGTGSSRDW 780
           F NIRIRNEMTP  EGG TR     +   IYDAAM YQ    D V++AGKEYGTGSSRDW
Sbjct: 718 FGNIRIRNEMTPELEGGYTRMQGEHQPRFIYDAAMLYQSKNIDTVVVAGKEYGTGSSRDW 777

Query: 781 AAKGTNLLGVKAVITESFERIHRSNLIGMGILPLQFKEGTTRKTLKLDGSERISI-EISD 839
           AAKGT LLGVKAVI ESFERIHRSNL+GMG+LPLQF  G TRKTL L G E   I  + +
Sbjct: 778 AAKGTLLLGVKAVIVESFERIHRSNLVGMGVLPLQFMPGETRKTLSLTGEETFDIVGLDE 837

Query: 840 KLTPGAMVPVTIERQDGDIEKIETLCRIDTADELEYYKNGGILQYVLRKI 889
            L P   V  TI    G++  I+   R+DTA E++YY  GG+L YVL +I
Sbjct: 838 PLLPKQEVVATIYYPSGEVRPIKLQSRLDTAVEVKYYLAGGVLSYVLDQI 887


Lambda     K      H
   0.316    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2043
Number of extensions: 84
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 897
Length adjustment: 43
Effective length of query: 848
Effective length of database: 854
Effective search space:   724192
Effective search space used:   724192
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory