GapMind for catabolism of small carbon sources

 

Protein WP_072910123.1 in Malonomonas rubra DSM 5091

Annotation: NCBI__GCF_900142125.1:WP_072910123.1

Length: 362 amino acids

Source: GCF_900142125.1 in NCBI

Candidate for 28 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
D-maltose catabolism thuK lo Trehalose/maltose import ATP-binding protein MalK; EC 7.5.2.1 (characterized) 42% 63% 176 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
putrescine catabolism potA lo PotG aka B0855, component of Putrescine porter (characterized) 35% 88% 176 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
trehalose catabolism thuK lo Trehalose/maltose import ATP-binding protein MalK; EC 7.5.2.1 (characterized) 42% 63% 176 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-cellobiose catabolism gtsD lo Sugar ABC transporter ATP-binding protein (characterized, see rationale) 39% 68% 171.4 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-glucose catabolism gtsD lo Sugar ABC transporter ATP-binding protein (characterized, see rationale) 39% 68% 171.4 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
lactose catabolism gtsD lo Sugar ABC transporter ATP-binding protein (characterized, see rationale) 39% 68% 171.4 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-maltose catabolism gtsD lo Sugar ABC transporter ATP-binding protein (characterized, see rationale) 39% 68% 171.4 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
sucrose catabolism gtsD lo Sugar ABC transporter ATP-binding protein (characterized, see rationale) 39% 68% 171.4 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
trehalose catabolism gtsD lo Sugar ABC transporter ATP-binding protein (characterized, see rationale) 39% 68% 171.4 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-mannose catabolism TT_C0211 lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 34% 84% 164.9 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
sucrose catabolism thuK lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 34% 84% 164.9 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-maltose catabolism malK_Aa lo ABC-type maltose transporter (EC 7.5.2.1) (characterized) 38% 59% 160.6 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-cellobiose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 35% 82% 160.2 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-galactose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 35% 82% 160.2 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-glucose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 35% 82% 160.2 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
lactose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 35% 82% 160.2 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-maltose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 35% 82% 160.2 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-mannose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 35% 82% 160.2 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
sucrose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 35% 82% 160.2 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
trehalose catabolism glcV lo monosaccharide-transporting ATPase (EC 3.6.3.17) (characterized) 35% 82% 160.2 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-maltose catabolism malK_Bb lo ABC-type maltose transport, ATP binding protein (characterized, see rationale) 38% 65% 159.5 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
L-arabinose catabolism xacJ lo Xylose/arabinose import ATP-binding protein XacJ; EC 7.5.2.13 (characterized, see rationale) 40% 57% 156.4 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
xylitol catabolism HSERO_RS17020 lo ABC-type sugar transport system, ATPase component protein (characterized, see rationale) 36% 57% 155.6 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
trehalose catabolism treV lo TreV, component of Trehalose porter (characterized) 36% 69% 148.3 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-cellobiose catabolism msiK lo MsiK protein, component of The cellobiose/cellotriose (and possibly higher cellooligosaccharides), CebEFGMsiK [MsiK functions to energize several ABC transporters including those for maltose/maltotriose and trehalose] (characterized) 32% 83% 146.7 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
D-sorbitol (glucitol) catabolism mtlK lo ABC transporter for D-Sorbitol, ATPase component (characterized) 36% 68% 144.4 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
glycerol catabolism glpT lo GlpT, component of Glycerol uptake porter, GlpSTPQV (characterized) 35% 58% 129.8 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3
glycerol catabolism glpS lo ABC transporter for Glycerol, ATPase component 1 (characterized) 32% 70% 122.9 ABC-type molybdate transporter (EC 7.3.2.5) 35% 190.3

Sequence Analysis Tools

View WP_072910123.1 at NCBI

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MSILVCRLNYPLANYQLAAELTVAPGITVLLGPNGAGKTSLLRLLAGLNQPASGQIQLGE
RCLFDAEKRIDLPSEKRRIGMVFQDLALFPHLDVSGNIGFGLKMRRVSSSARQNRVQQLL
EKLAIEHLAKRNVTTLSGGERQKVALARTLATDPQLLLLDEPTAALDPAARGEIRRWLQT
VLTQLNIPTLLVTHDAEEVAYFRKRVAVMEQGKIVQQGSFHQLLREPASEFVARFVGVNY
ILGEVCEQAGKLIFCSRGGAKFLAPFKQVIPGAAFMTVLPWDIALYRELPDGSPRNHLYG
EIRDVVILGDRVRITLEKEDKLVAEISTRGYLALGEPQPGENFWAVFKAREARIENCEEL
PC

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory