GapMind for catabolism of small carbon sources

 

Alignments for a candidate for etoh-dh-nad in Paucidesulfovibrio gracilis DSM 16080

Align alcohol dehydrogenase (EC 1.1.1.1); long-chain-alcohol dehydrogenase (EC 1.1.1.192) (characterized)
to candidate WP_078715704.1 B5D49_RS00550 iron-containing alcohol dehydrogenase

Query= BRENDA::A4ISB9
         (387 letters)



>NCBI__GCF_900167125.1:WP_078715704.1
          Length = 395

 Score =  323 bits (828), Expect = 5e-93
 Identities = 164/394 (41%), Positives = 240/394 (60%), Gaps = 9/394 (2%)

Query: 3   NFTFRNPTKLIFGRGQIEQLKEEVPKYGKKVLLVYGGGSIKRNGLYDEVMSLLTDIGAEV 62
           NF F+NPT++IFG G + +L E   ++G + LLV GGGS+KRNG++D  +S L   G  V
Sbjct: 2   NFEFQNPTRIIFGAGNLSRLGEAAREFGTRALLVTGGGSVKRNGVFDRAVSSLKAAGITV 61

Query: 63  VELPGVEPNPRLSTVKKGVDICRREGIEFLLAVGGGSVIDCTKAIAAGAKFDGDPWEFIT 122
            E  G+EPNPR+++V +G    R+E  + ++A+GGGSV+D +K I+A A +DGDPW+ I 
Sbjct: 62  AECEGIEPNPRITSVARGAATVRKEKCDIIIALGGGSVMDASKVISAAALYDGDPWDMIN 121

Query: 123 ----KKATVTEALPFGTVLTLAATGSEMNAGSVITNWETKEKYGWGSPVTFPQFSILDPT 178
               K     +ALP  TV TLAATGSE N G+VITN + K K     P+ +P+ +++DP 
Sbjct: 122 HGQDKVYVPKQALPVITVPTLAATGSETNCGAVITNEDAKVKSFIQIPLLYPKVAVVDPE 181

Query: 179 YTMTVPKDHTVYGIVDMMSHVFEQYFHHTPNTPLQDRMCEAVLKTVIEAAPKLVDDLENY 238
            T+TVPKD T YG+ D+++HV E YF+    TP+QDR  E V+ T ++  PK + D  + 
Sbjct: 182 LTVTVPKDQTAYGVCDLITHVTEAYFNGIDTTPVQDRFAEGVILTAMQWGPKAIADGSDI 241

Query: 239 ELRETIMYSGTIALNGFLQMGVRGDWATHDIEHAVSAVYDIPHAGGLAILFPNWMKHVLD 298
           E R  + +S  +ALNG++Q G  G +  H +EH VSA +D+ HA GL+I+ P WM+    
Sbjct: 242 EARAQVQWSAIVALNGWVQAGTNGAYPVHMMEHTVSAYHDVTHAAGLSIINPAWMRFAAK 301

Query: 299 ENVSRFAQLAVRVFDVDPTGKTERDVALEGIERLRAFWSSLGAPSRLADYGIGEENLELM 358
            N  +F Q A RVF +      + D ALEGI+R  AF  S+G P+R ++ GI  E  E  
Sbjct: 302 TNTGKFVQFAERVFGLPAKSADDLDCALEGIDRFEAFLRSIGCPTRFSELGIDGELFETY 361

Query: 359 ADKAMAF-----GEFGRFKTLNRDDVLAILRASL 387
           A   +       G       ++ +D+L + R++L
Sbjct: 362 ARDTLKIVRDENGNLPGRPPMSVEDMLGVFRSAL 395


Lambda     K      H
   0.320    0.138    0.412 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 450
Number of extensions: 16
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 387
Length of database: 395
Length adjustment: 31
Effective length of query: 356
Effective length of database: 364
Effective search space:   129584
Effective search space used:   129584
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory