GapMind for catabolism of small carbon sources

 

4-hydroxybenzoate catabolism in Xanthobacter autotrophicus Py2

Best path

pcaK, pobA, pcaH, pcaG, pcaB, pcaC, pcaD, pcaI, pcaJ, pcaF

Rules

Overview: 4-hydroxybenzoate catabolism in GapMind is based on aerobic oxidation to 3,4-hydroxybenzoate (protocatechuate), followed by meta, ortho, or para cleavage; or reduction to benzoyl-CoA (part of a MetaCyc pathway for phenol degradation, link)

72 steps (48 with candidates)

Or see definitions of steps

Step Description Best candidate 2nd candidate
pcaK 4-hydroxybenzoate transporter pcaK XAUT_RS13540 XAUT_RS05705
pobA 4-hydroxybenzoate 3-monooxygenase XAUT_RS13510
pcaH protocatechuate 3,4-dioxygenase, alpha subunit XAUT_RS13535 XAUT_RS13530
pcaG protocatechuate 3,4-dioxygenase, beta subunit XAUT_RS13530 XAUT_RS13535
pcaB 3-carboxymuconate cycloisomerase XAUT_RS13515 XAUT_RS24690
pcaC 4-carboxymuconolactone decarboxylase XAUT_RS13525 XAUT_RS05610
pcaD 3-oxoadipate enol-lactone hydrolase XAUT_RS05610 XAUT_RS17525
pcaI 3-oxoadipate CoA-transferase subunit A (PcaI) XAUT_RS05620 XAUT_RS11815
pcaJ 3-oxoadipate CoA-transferase subunit B (PcaJ) XAUT_RS05615 XAUT_RS11820
pcaF succinyl-CoA:acetyl-CoA C-succinyltransferase XAUT_RS04530 XAUT_RS04615
Alternative steps:
ackA acetate kinase XAUT_RS16350
acs acetyl-CoA synthetase, AMP-forming XAUT_RS07400 XAUT_RS12385
adh acetaldehyde dehydrogenase (not acylating) XAUT_RS01855 XAUT_RS03370
ald-dh-CoA acetaldehyde dehydrogenase, acylating XAUT_RS04720
atoB acetyl-CoA C-acetyltransferase XAUT_RS23630 XAUT_RS15615
badH 2-hydroxy-cyclohexanecarboxyl-CoA dehydrogenase XAUT_RS04590 XAUT_RS06800
badI 2-ketocyclohexanecarboxyl-CoA hydrolase XAUT_RS04595 XAUT_RS04520
badK cyclohex-1-ene-1-carboxyl-CoA hydratase XAUT_RS16635 XAUT_RS04570
bamB class II benzoyl-CoA reductase, BamB subunit
bamC class II benzoyl-CoA reductase, BamC subunit
bamD class II benzoyl-CoA reductase, BamD subunit XAUT_RS04625
bamE class II benzoyl-CoA reductase, BamE subunit
bamF class II benzoyl-CoA reductase, BamF subunit
bamG class II benzoyl-CoA reductase, BamG subunit
bamH class II benzoyl-CoA reductase, BamH subunit XAUT_RS17550 XAUT_RS23440
bamI class II benzoyl-CoA reductase, BamI subunit XAUT_RS17545
bcrA ATP-dependent benzoyl-CoA reductase, alpha subunit
bcrB ATP-dependent benzoyl-CoA reductase, beta subunit
bcrC ATP-dependent benzoyl-CoA reductase, gamma subunit
bcrD ATP-dependent benzoyl-CoA reductase, delta subunit
boxA benzoyl-CoA epoxidase, subunit A
boxB benzoyl-CoA epoxidase, subunit B
boxC 2,3-epoxybenzoyl-CoA dihydrolase
boxD 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase XAUT_RS04540
catI 3-oxoadipate CoA-transferase subunit A (CatI) XAUT_RS25720
catJ 3-oxoadipate CoA-transferase subunit B (CatJ)
Ch1CoA cyclohex-1-ene-1-carbonyl-CoA dehydrogenase XAUT_RS21625 XAUT_RS11005
dch cyclohexa-1,5-diene-1-carboxyl-CoA hydratase XAUT_RS04570 XAUT_RS16635
ech (S)-3-hydroxybutanoyl-CoA hydro-lyase XAUT_RS16635 XAUT_RS04570
fadB (S)-3-hydroxybutanoyl-CoA dehydrogenase XAUT_RS04535 XAUT_RS04610
fcbT1 tripartite 4-hydroxybenzoate transporter, substrate-binding component FcbT1
fcbT2 tripartite 4-hydroxybenzoate transporter, small DctQ-like component FcbT2
fcbT3 tripartite 4-hydroxybenzoate transporter, large permease subunit FcbT3 XAUT_RS16970
gcdH glutaryl-CoA dehydrogenase XAUT_RS23880 XAUT_RS21625
had 6-hydroxycyclohex-1-ene-1-carbonyl-CoA dehydrogenase
hcl 4-hydroxybenzoyl-CoA ligase XAUT_RS17795 XAUT_RS10545
hcrA 4-hydroxybenzoyl-CoA reductase, alpha subunit XAUT_RS06465 XAUT_RS03255
hcrB 4-hydroxybenzoyl-CoA reductase, beta subunit
hcrC 4-hydroxybenzoyl-CoA reductase, gamma subunit XAUT_RS03245 XAUT_RS19050
ligA protocatechuate 4,5-dioxygenase, alpha subunit
ligB protocatechuate 4,5-dioxygenase, beta subunit
ligC 2-hydroxy-4-carboxymuconate-6-semialdehyde dehydrogenase
ligI 2-pyrone-4,6-dicarboxylate hydrolase XAUT_RS16985
ligJ 4-carboxy-2-hydroxymuconate hydratase
ligK 4-oxalocitramalate aldolase
ligU 4-oxalomesaconate tautomerase
mhpD 2-hydroxypentadienoate hydratase XAUT_RS04715
mhpE 4-hydroxy-2-oxovalerate aldolase XAUT_RS04725 XAUT_RS06660
oah 6-oxocyclohex-1-ene-1-carbonyl-CoA hydratase XAUT_RS04595 XAUT_RS16635
paaF 2,3-dehydroadipyl-CoA hydratase XAUT_RS04570 XAUT_RS16635
paaH 3-hydroxyadipyl-CoA dehydrogenase XAUT_RS04535 XAUT_RS04610
paaJ2 3-oxoadipyl-CoA thiolase XAUT_RS05630 XAUT_RS04530
pimB 3-oxopimeloyl-CoA:CoA acetyltransferase XAUT_RS03140 XAUT_RS22505
pimC pimeloyl-CoA dehydrogenase, small subunit XAUT_RS08530
pimD pimeloyl-CoA dehydrogenase, large subunit XAUT_RS08535 XAUT_RS06740
pimF 6-carboxyhex-2-enoyl-CoA hydratase XAUT_RS04535 XAUT_RS04610
praA protocatechuate 2,3-dioxygenase
praB 2-hydroxymuconate 6-semialdehyde dehydrogenase XAUT_RS13710 XAUT_RS01855
praC 2-hydroxymuconate tautomerase XAUT_RS08555 XAUT_RS04780
praD 2-oxohex-3-enedioate decarboxylase XAUT_RS04715
pta phosphate acetyltransferase XAUT_RS16345 XAUT_RS15790
xylF 2-hydroxymuconate semialdehyde hydrolase XAUT_RS04710 XAUT_RS07330

Confidence: high confidence medium confidence low confidence
transporter – transporters and PTS systems are shaded because predicting their specificity is particularly challenging.

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory