GapMind for Amino acid biosynthesis

 

Alignments for a candidate for proB in Shewanella sp. ANA-3

Align glutamate-5-semialdehyde dehydrogenase (EC 1.2.1.41) (characterized)
to candidate 7026928 Shewana3_4057 glutamate-5-semialdehyde dehydrogenase (RefSeq)

Query= BRENDA::Q9Z110
         (795 letters)



>FitnessBrowser__ANA3:7026928
          Length = 415

 Score =  252 bits (644), Expect = 2e-71
 Identities = 154/416 (37%), Positives = 244/416 (58%), Gaps = 14/416 (3%)

Query: 363 VEQQGEMARSGGRMLATLEPEQRAEIINHLADLLTDQREEILLANKKDLEEA-EGRLASP 421
           ++Q    A    R LA L+   +  ++  +A  L ++  EI  AN  D+  A +  L+  
Sbjct: 4   IKQISADAAHAARTLAQLDESLKNTVLLDMARSLREKSYEIQSANLIDVHRATQDNLSPA 63

Query: 422 LLKRLSLSTSKLNSLAIGLRQIAASSQESVGRVLRRTRIAKNLELEQVTVPIGVLLVIFE 481
           ++ RL+L+  ++ ++A G+  IAA   + VGR     +    L + ++ VP+GV+ +I+E
Sbjct: 64  MVDRLTLNQHRIEAMAQGIETIAALP-DPVGRERFIGKRPNGLSISKMRVPLGVVCMIYE 122

Query: 482 SRPDCLPQVAALAIASGNGLLLKGGKEAAHSNRILHLLTQEALSIHGVKEAIQLV---NT 538
           +RP+      AL   SGN ++L+GGKEA H+++++  + Q  L+ +G+ +A+  V     
Sbjct: 123 ARPNVTADAGALCFKSGNAVILRGGKEALHTSQVIASILQAVLTAYGLPKALISVIPDPD 182

Query: 539 REEVEDLCRLDKIIDLIIPRGSSQLVRDIQKAAKGIPVMGHSEGICHMYVDSEASVDKVT 598
           R  + +L +  + ID+IIPRG   L+  + + +  IPV+ H +G+CH+YVD +A+ D   
Sbjct: 183 RALMLELMQQREFIDVIIPRGGEGLINYVTENSS-IPVIQHFKGVCHLYVDKDANQDIAL 241

Query: 599 RLVRDSKCEYPAACNALETLLIHRDLLRTPLF-DQIIDMLRVEQVKIHAGPKFASYL--- 654
            L+ + K +    CNALE LL+H+D+   P F  ++   L   QVKI+A P  A+Y    
Sbjct: 242 DLLLNGKTQRTGVCNALEGLLVHKDI--APRFLPRVAKALAEHQVKINACPPAAAYFDAC 299

Query: 655 TFSPSEVKSLRTEYGDLEVCIEVVDSVQEAIDHIHKYGSSHTDVIVTENEKTAEFFLQHV 714
           T+   E      EY DLE+ I  VDS + A  HI K+GS HT+VI T+NE TA  F + V
Sbjct: 300 TYMAEE--DFGQEYLDLEIAIRQVDSFEVATQHIAKFGSHHTEVICTDNELTAARFQRAV 357

Query: 715 DSACVFWNASTRFSDGYRFGLGAEVGISTSRIHARGPVGLEGLLTTKWLLRGQDHV 770
           D++ V  NAS+RFSDG   GLGAE+GI+T+++HA GP+GLE L T K+L+ G   +
Sbjct: 358 DASVVMVNASSRFSDGSELGLGAEIGIATTKLHAYGPMGLEALTTEKYLVSGTGQI 413


Lambda     K      H
   0.319    0.134    0.383 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 684
Number of extensions: 26
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 795
Length of database: 415
Length adjustment: 36
Effective length of query: 759
Effective length of database: 379
Effective search space:   287661
Effective search space used:   287661
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory