Align O-acetylhomoserine aminocarboxypropyltransferase (EC 2.5.1.49) (characterized)
to candidate BPHYT_RS13720 BPHYT_RS13720 O-acetylhomoserine aminocarboxypropyltransferase
Query= BRENDA::L7N4M1 (449 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS13720 BPHYT_RS13720 O-acetylhomoserine aminocarboxypropyltransferase Length = 450 Score = 461 bits (1186), Expect = e-134 Identities = 234/426 (54%), Positives = 302/426 (70%), Gaps = 3/426 (0%) Query: 18 FETKQIHAGQHPDPTTNARALPIYATTSYTFDDTAHAAALFGLEIPGNIYTRIGNPTTDV 77 F+T +HAG PDPTT ARA PIY TTS++F D+ HAAALF +E G++Y+RI NPT V Sbjct: 6 FDTLALHAGAAPDPTTGARATPIYQTTSFSFRDSDHAAALFNMERAGHVYSRISNPTVAV 65 Query: 78 VEQRIAALEGGVAALFLSSGQAAETFAILNLAGAGDHIVSSPRLYGGTYNLFHYSLAKLG 137 E+R+AALE G A+ +SGQAA AI L GAG HIV+S LYGG++NL HY+L + G Sbjct: 66 FEERVAALENGAGAIGTASGQAALHLAIATLMGAGSHIVASSALYGGSHNLLHYTLRRFG 125 Query: 138 IEVSFVDDPDDLDTWQAAVRPNTKAFFAETISNPQIDLLDTPAVSEVAHRNGVPLIVDNT 197 IE +FV P DLD W+AA+RPNT+ F ET+ NP +D+LD AV+++AH + VPL+VD+T Sbjct: 126 IETTFVK-PGDLDAWRAALRPNTRLLFGETLGNPGLDVLDIAAVAQIAHEHRVPLLVDST 184 Query: 198 IATPYLIQPLAQGADIVVHSATKYLGGHGAAIAGVIVDGGNFDW-TQGRFPGFTTPDPSY 256 TPYL++P GAD V HSATK+LGGHG I GV+VDGG FD+ GRFP FT P + Sbjct: 185 FTTPYLLKPFEHGADFVYHSATKFLGGHGTTIGGVLVDGGTFDFEASGRFPEFTEPYDGF 244 Query: 257 HGVVFAELGPPA-FALKARVQLLRDYGSAASPFNAFLVAQGLETLSLRIERHVANAQRVA 315 HG+VF+E A F L+AR + LRD+G+ P A+ + QG+ETL LR+ERHVAN +RV Sbjct: 245 HGMVFSEESTVAPFLLRARREGLRDFGACLHPQAAWQLLQGIETLPLRMERHVANTRRVV 304 Query: 316 EFLAARDDVLSVNYAGLPSSPWHERAKRLAPKGTGAVLSFELAGGIEAGKAFVNALKLHS 375 EFLAA V SV Y LP+ P H AKRL P+G GAV SF L G AG++F+ AL L S Sbjct: 305 EFLAAHAAVESVAYPELPTHPDHALAKRLLPRGAGAVFSFNLRGDRAAGRSFIEALSLFS 364 Query: 376 HVANIGDVRSLVIHPASTTHAQLSPAEQLATGVSPGLVRLAVGIEGIDDILADLELGFAA 435 H+AN+GD RSLVIHPASTTH ++ A A G++ G +RL++G+E DD++ DL+ A Sbjct: 365 HLANVGDARSLVIHPASTTHFRMDAAALAAAGIAEGTIRLSIGLEDPDDLIDDLKRALKA 424 Query: 436 ARRFSA 441 A++ SA Sbjct: 425 AQKASA 430 Lambda K H 0.318 0.134 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 623 Number of extensions: 23 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 449 Length of database: 450 Length adjustment: 33 Effective length of query: 416 Effective length of database: 417 Effective search space: 173472 Effective search space used: 173472 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory