Align Probable 2-isopropylmalate synthase; EC 2.3.3.13; Alpha-IPM synthase; Alpha-isopropylmalate synthase (uncharacterized)
to candidate 351386 BT1858 2-isopropylmalate synthase (NCBI ptt file)
Query= curated2:Q8TYB1 (499 letters) >FitnessBrowser__Btheta:351386 Length = 499 Score = 251 bits (642), Expect = 3e-71 Identities = 172/501 (34%), Positives = 265/501 (52%), Gaps = 21/501 (4%) Query: 9 DTTLRDGEQTPGVSLTVEEKVEIARKL-DEFGVDTIEAGFPVASEGEFEAVRAIAGEELD 67 DTTLRDGEQT GVS EK+ IAR L ++ VD +E SEGEFEAV+ I Sbjct: 2 DTTLRDGEQTSGVSFVPHEKLMIARLLLEDLKVDRVEVASARVSEGEFEAVKMICDWAAR 61 Query: 68 AEICGLARCVKGDIDAAIDAD----VDC--VHVFIATSDIHLRYKLEMSREEALERAIEG 121 + V G +D D C +++ S H +L+ + EE + I Sbjct: 62 RNLLQKVE-VLGFVDGHTSVDWIQRTGCRVINLLCKGSLKHCTQQLKKTPEEHIADIINV 120 Query: 122 VEYASDHGVTVEFSAEDATRTDRD---YLLEVYKATVEAGADRVNVPDTVGVMTPPEMYR 178 V YA + + V ED + +D Y+ ++ + R +PDT+G++ P ++ Sbjct: 121 VHYADEQDIGVNVYLEDWSNGMKDSPEYVFQLMDGLKQTSIRRYMLPDTLGILNPLQVIE 180 Query: 179 LTAEVVDAV-DVPVSVHCHNDFGMAVANSLAAVEAGAEQVHVTVNGIGERAGNASLEQVV 237 ++ + H HND+ +AV+N LAAV +G +H T+NG+GERAGNA L V Sbjct: 181 YMRKMKKRYPNTHFDFHAHNDYDLAVSNVLAAVLSGVRGLHTTINGLGERAGNAPLSSVQ 240 Query: 238 MALKALYDIELDVRTEMLVELSRLVERLTGVVVPPNTPIVGENAFAHESGIHSHGVIKKA 297 LK ++ ++ L ++SR+VE +G+V+P N PIVGEN F +G+H+ G K Sbjct: 241 AILKDHFNAMTNIDESRLNDVSRVVESYSGIVIPANKPIVGENVFTQVAGVHADGDNKNN 300 Query: 298 ETYEPIRPEDVGHRRRIVLGKHAGRHAIKKKLEEMGIEVTEEQLDEIVRRVKELGDKGKR 357 + PE G +R LGK +G+ I+K LE++G+E+ E+ + ++ R+ ELGDK + Sbjct: 301 LYCNDLLPERFGRKREYALGKTSGKANIRKNLEDLGLELDEDAMRKVTERIIELGDKKEL 360 Query: 358 VTEDDLEAIARDVV--GEVPESEAAVKLEEIAVMTGNKFTPTASVRVYLDGEEHEAASTG 415 VT++DL I DV+ G + E VKL+ V + P A++++ ++G+E+E +S+G Sbjct: 361 VTQEDLPYIVSDVLKHGAIGEK---VKLKSYFVNLAHGLKPMATLKIEINGKEYEESSSG 417 Query: 416 VGSVDAAIRALREAIE-ELGMDVE-LKEYRLEAITGG-TDALAEVTVRLEDEDGNVTTAR 472 G DA +RALR+ + LG L Y + GG TDA + TV + D V R Sbjct: 418 DGQYDAFVRALRKIYKVTLGRKFPMLTNYAVSIPPGGRTDAFVQ-TVITWNYDEQVFRTR 476 Query: 473 GAAEDIVMASVKAFVRGVNRL 493 G D A++KA ++ +N L Sbjct: 477 GLDADQTEAAIKATMKMLNLL 497 Lambda K H 0.315 0.133 0.364 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 524 Number of extensions: 21 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 499 Length of database: 499 Length adjustment: 34 Effective length of query: 465 Effective length of database: 465 Effective search space: 216225 Effective search space used: 216225 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory