Align aspartate 4-decarboxylase (EC 4.1.1.12) (characterized)
to candidate 350263 BT0735 aspartate decarboxylase AsdA (NCBI ptt file)
Query= BRENDA::Q93QX0 (533 letters) >lcl|FitnessBrowser__Btheta:350263 BT0735 aspartate decarboxylase AsdA (NCBI ptt file) Length = 557 Score = 467 bits (1201), Expect = e-136 Identities = 243/528 (46%), Positives = 339/528 (64%), Gaps = 11/528 (2%) Query: 6 QSLAKLSPFELKDELIKIASSDGNRL---MLNAGRGNPNFLATTPRRAFFRLGLFAAAES 62 + + +SPFELK++LI++A ++ MLNAGRGNPN++AT PR AFF LG F E Sbjct: 31 KKMETISPFELKNKLIEMADESIKKMAHTMLNAGRGNPNWIATEPREAFFLLGKFGLCEC 90 Query: 63 ELSYSYMTTVGVGGLAKIDGIEGRFERYIAENRDQEGVRFLGKSLSYVRDQLGLDPAAFL 122 S G+ G+ + +GI RFE ++ EN + G R L ++ +Y+ + DP + Sbjct: 91 RRVQSLEE--GIAGIPQQEGIAARFEAFLKENEKEAGARLLKETYNYMLMEHAADPDRLV 148 Query: 123 HEMVDGILGCNYPVPPRMLNISEKIVRQYIIREMGADAIPSESVNLFAVEGGTAAMAYIF 182 HE + ++G YPVP R+L+ +E IV+ Y+ +EM P + +LFA EGGTAAM Y+F Sbjct: 149 HEWAESVIGDQYPVPDRILHFTELIVQDYLAQEMCDRRPPKGTFDLFATEGGTAAMCYVF 208 Query: 183 ESLKLNGLLKAGDKVAIGMPVFTPYIEIPELAQYALEEVAINADPSL-----NWQYPDSE 237 +SL+ N LL GD +A+ +PVFTPYIEIPEL +Y + I+AD WQY D + Sbjct: 209 DSLQENFLLNQGDSIALMIPVFTPYIEIPELRRYQFDVTEISADQMTPDGLHTWQYKDED 268 Query: 238 LDKLKDPAIKIFFCVNPSNPPSVKMDQRSLERVRNIVAEHRPDLMILTDDVYGTFADDFQ 297 +DKLK+P IK F NPSNPPS + + R+ NIV P+LMI+TDDVYGTF F+ Sbjct: 269 IDKLKNPQIKALFITNPSNPPSYALSPETAARIVNIVKNDNPNLMIITDDVYGTFIPHFR 328 Query: 298 SLFAICPENTLLVYSFSKYFGATGWRLGVVAAHQQNVFDLALDKLQESEKVALDHRYRSL 357 SL A P NTL VYSFSKYFGATGWR V+A H+ N++D + +L E + L+ RY SL Sbjct: 329 SLMAELPHNTLCVYSFSKYFGATGWRNAVIALHEDNIYDKMIARLSEEQTAILNKRYASL 388 Query: 358 LPDVRSLKFIDRLVADSRAVALNHTAGLSTPQQVQMALFSLFALMDEADEYKHTLKQLIR 417 +KFIDR+VADSR +ALNHTAGLS PQQ+QM+LF+ F+L+D+ D YK ++++I Sbjct: 389 SLHPEKMKFIDRMVADSRQIALNHTAGLSLPQQMQMSLFAAFSLLDKEDRYKAKMQEIIH 448 Query: 418 RRETTLYRELGMPPLRDENAVDYYTLIDLQDVTAKLYGEAFSEWAVKQSSTGDMLFRIAD 477 RR L+ G + D YY+ ID+ K YG+ F+++ K + D++FR+A+ Sbjct: 449 RRLHALWDSTGFTLIEDPLRAGYYSEIDMLVWAKKFYGDEFADYLQKTYNPLDVVFRLAN 508 Query: 478 ETGIVLLPGRGFGSNRPSGRASLANLNEYEYAAIGRALRKMADELYAE 525 ET +VLL G GF + S R SLANLNE +Y IG++++++ DE YAE Sbjct: 509 ETSLVLLNGGGFAGPKWSVRVSLANLNEADYVKIGQSIKRVLDE-YAE 555 Lambda K H 0.320 0.137 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 740 Number of extensions: 29 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 533 Length of database: 557 Length adjustment: 35 Effective length of query: 498 Effective length of database: 522 Effective search space: 259956 Effective search space used: 259956 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory