Align glutamate N-acetyltransferase/amino-acid acetyltransferase; EC 2.3.1.35 2.3.1.1 (characterized)
to candidate H281DRAFT_06249 H281DRAFT_06249 glutamate N-acetyltransferase
Query= CharProtDB::CH_000559 (406 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_06249 H281DRAFT_06249 glutamate N-acetyltransferase Length = 413 Score = 441 bits (1134), Expect = e-128 Identities = 233/414 (56%), Positives = 288/414 (69%), Gaps = 9/414 (2%) Query: 1 MAVNLTEKTAEQLPDIDGIALYTAQAGVKKPGHTDLTLIAVAAGSTVGAVFTTNRFCAAP 60 MAVN QL + G+ L A+A ++KP D+ +I+V G+TVG VFT NRFCAAP Sbjct: 1 MAVNFPSIDPAQLHPVAGVTLGWAEANIRKPNRKDVLVISVDEGATVGGVFTQNRFCAAP 60 Query: 61 VHIAKSHL----FDEDGVRALVINTGNANAGTGAQGRIDALAVCAAAARQIGCKPNQVMP 116 V + + +L +RALVINTGNANAGTG G + A C AR P QV+P Sbjct: 61 VTVCRENLERVRAGGKPIRALVINTGNANAGTGEPGLVAARETCVELARLADIAPEQVLP 120 Query: 117 FSTGVILEPLPADKIIAALP----KMQPAFWNEAARAIMTTDTVPKAASREGKVGDQHTV 172 FSTGVILEPLP D++ A LP + A W +AA+AIMTTDT+PKA SR+ + D HTV Sbjct: 121 FSTGVILEPLPVDRLKAGLPAALANRKEANWYDAAQAIMTTDTLPKATSRQVTI-DGHTV 179 Query: 173 RATGIAKGSGMIHPNMATMLGFIATDAKVSQPVLQLMTQEIADETFNTITVDGDTSTNDS 232 TGI+KG+GMI PNMATMLGF+A DA V+QPVL + + +AD +FN IT+DGDTSTNDS Sbjct: 180 TLTGISKGAGMIKPNMATMLGFLAFDAAVAQPVLDALVKHVADRSFNCITIDGDTSTNDS 239 Query: 233 FVIIATGKNSQSEIDNIADPRYAQLKELLCSLALELAQAIVRDGEGATKFITVRVENAKT 292 F++IA+GK+S I + P YA L++ + +A LAQ IVRDGEGATKF+TV VE + Sbjct: 240 FILIASGKSSLPAITSTDSPAYAALRDAVTEVAQTLAQLIVRDGEGATKFMTVHVEGGSS 299 Query: 293 CDEARQAAYAAARSPLVKTAFFASDPNLGKRLAAIGYADVADLDTDLVEMYLDDILVAEH 352 E RQ AYA SPLVKTAF+ASDPNLG+ LAAIGYA + DLD +++YLDD+LVA Sbjct: 300 VGECRQIAYAIGHSPLVKTAFYASDPNLGRILAAIGYAGIDDLDVGKIDLYLDDVLVATA 359 Query: 353 GGRAASYTEAQGQAVMSKDEITVRIKLHRGQAAATVYTCDLSHGYVSINADYRS 406 GGR +Y E GQ VM K EI +R+ L RG A AT++TCDLSH YVSINADYRS Sbjct: 360 GGRNPAYREEDGQRVMKKSEIGIRVVLGRGNAQATIWTCDLSHDYVSINADYRS 413 Lambda K H 0.317 0.130 0.367 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 443 Number of extensions: 13 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 406 Length of database: 413 Length adjustment: 31 Effective length of query: 375 Effective length of database: 382 Effective search space: 143250 Effective search space used: 143250 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory