Align aspartate 4-decarboxylase (EC 4.1.1.12) (characterized)
to candidate H281DRAFT_04749 H281DRAFT_04749 aspartate 4-decarboxylase
Query= BRENDA::Q53IZ1 (531 letters) >FitnessBrowser__Burk376:H281DRAFT_04749 Length = 554 Score = 616 bits (1589), Expect = 0.0 Identities = 315/526 (59%), Positives = 388/526 (73%), Gaps = 7/526 (1%) Query: 8 LANLSPFELKDELIKVASG-----KANRLMLNAGRGNPNFLATTPRRAFFRLGLFAAAES 62 LA LSPFELKDELIK A G AN MLNAGRGNPNFLAT PR F++LGLFA ES Sbjct: 18 LAALSPFELKDELIKAAGGGAVERPANASMLNAGRGNPNFLATIPRHGFWQLGLFAMRES 77 Query: 63 ELSYSYMTVGVGGLAKLDGIEGRFERFIAEHRDQEGVKFLGKSLSYVRDQLGLDPAAFLH 122 E S++YM GVGG + +G+E RF+ F+ E++ G+ FL ++SYVRDQLGL FL+ Sbjct: 78 ERSFAYMPEGVGGFPRREGLEERFDLFLRENKGVAGIDFLRGAVSYVRDQLGLSAGDFLY 137 Query: 123 EMVDGILGCNYPVPPRMLTVSEQIVRQYIVREMAGGAVPPESVDLFAVEGGTAAMAYIFE 182 EM +GILG NYPVP RML +SE IV QY+ REM G D+FAVEGGTAAM YIF Sbjct: 138 EMCEGILGSNYPVPDRMLKLSEVIVGQYLRREMIGRHPFVGEFDVFAVEGGTAAMTYIFN 197 Query: 183 SLRISGLLKAGDKVAIGMPVFTPYIEIPELAQYDLKEVPIHADPDNGWQYSDAELDKLKD 242 ++R + L+K GD +A+GMP+FTPYIEIP L Y L V ++A +NGWQY+ ELDKL+D Sbjct: 198 TMRENHLIKPGDTIALGMPIFTPYIEIPRLNDYQLNVVNLNAGVENGWQYTKEELDKLRD 257 Query: 243 PDVKIFFCVNPSNPPSVKMDQRSLDRVRAIVAEQRPDLLILTDDVYGTFADEFQSLFSVC 302 P VK FF VNPSNPPSVKMD SL + IV E RPDL++LTDDVYGTFAD+F SLF++ Sbjct: 258 PKVKAFFLVNPSNPPSVKMDDESLQYIADIVKE-RPDLILLTDDVYGTFADDFVSLFALA 316 Query: 303 PRNTLLVYSFSKYFGATGWRLGVIAAHKDNVFDHALSQLPESAKKALDHRYRSLLPDVRS 362 P+NT+LVYS+SKYFGATGWRLG IA H+DNV D +S+LP+ KK L RY S+ + Sbjct: 317 PKNTILVYSYSKYFGATGWRLGTIATHRDNVLDRLISELPKDVKKQLHERYESITTEPEK 376 Query: 363 LKFIDRLVADSRVVALNHTAGLSTPQQVQMVLFSLFALMDEADAYKQALKQLIRRREATL 422 LKFIDRLVADSR VALNHTAGLSTPQQVQMVLFSLF+LMD DAYK ALK+LIR+R+ L Sbjct: 377 LKFIDRLVADSRTVALNHTAGLSTPQQVQMVLFSLFSLMDTPDAYKNALKRLIRKRKQAL 436 Query: 423 YRELGMP-PLENPNSVNYYTLIDLQNVTCRLYGEAFSQWAVQQSSTGDMLFRVADETGIV 481 Y E+G+ +PN V+YYT++D + + R++G F W ++ + ++LFR+A E +V Sbjct: 437 YEEVGIAFDDSDPNQVDYYTILDAEYLGERMFGREFVDWQLKSTQPTELLFRLAREARVV 496 Query: 482 LLPGRGFGSDRPSGRASLANLNEYEYAAIGRALRRLADELYEQYKA 527 LLPG GFG+ SGR SLANLNE +Y IGRA+RRL +E E++ A Sbjct: 497 LLPGLGFGTQHASGRVSLANLNESDYRQIGRAVRRLIEEYVERFNA 542 Lambda K H 0.321 0.138 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 809 Number of extensions: 33 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 531 Length of database: 554 Length adjustment: 35 Effective length of query: 496 Effective length of database: 519 Effective search space: 257424 Effective search space used: 257424 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory