Align (R)-citramalate synthase CimA; EC 2.3.1.182 (characterized, see rationale)
to candidate Echvi_2061 Echvi_2061 Isopropylmalate/homocitrate/citramalate synthases
Query= uniprot:Q8F3Q1_LEPIN (516 letters) >FitnessBrowser__Cola:Echvi_2061 Length = 504 Score = 528 bits (1361), Expect = e-154 Identities = 266/503 (52%), Positives = 362/503 (71%), Gaps = 7/503 (1%) Query: 11 LDVTLRDGEQTRGVSFSTSEKLNIAKFLLQKLNVDRVEIASARVSKGELETVQKIMEWAA 70 +D TLRDGEQT GVSF SEKL IAK LL++L VDR+E+ASARVS+GELE V+KI WAA Sbjct: 1 MDTTLRDGEQTSGVSFLPSEKLQIAKLLLEELRVDRIEVASARVSEGELEGVKKITHWAA 60 Query: 71 TEQLTERIEILGFVDGNKTVDWIKDSGAKVLNLLTKGSLHHLEKQLGKTPKEFFTDVSFV 130 + + +E+LGFVD +VDW+ ++GAKVLNLLTKGSL+HL QL KTP E F + Sbjct: 61 EKGYLDCVEVLGFVDTPASVDWLTEAGAKVLNLLTKGSLNHLTHQLKKTPVEHFAAIEKC 120 Query: 131 IEYAIKSGLKINVYLEDWSNGFRNSPDYVKSLVEHLSKEHIERIFLPDTLGVLSPEETFQ 190 I YA + G+ +NVYLEDWS+G R+S DY L+ L+ ++++R+ LPDTLG+L P E + Sbjct: 121 IHYANEKGISVNVYLEDWSSGMRHSRDYTLELIAFLADQNVKRVMLPDTLGLLKPAEVAE 180 Query: 191 GVDSLIQKYPDIHFEFHGHNDYDLSVANSLQAIRAGVKGLHASINGLGERAGNTPLEALV 250 V + +++P++HF+FH HNDYDLSVAN ++AI G+ G+H ++NGLGERAGN PLE++V Sbjct: 181 YVGLVSEQFPEVHFDFHAHNDYDLSVANVMEAINHGISGIHTTVNGLGERAGNAPLESVV 240 Query: 251 TTIHDKSNSKTNINEIAITEASRLVEVFSGKRISANRPIVGEDVFTQTAGVHADGDKKGN 310 T+ D + K N+ E I S+LVE FSG I +N+P+VGE+VFTQTAG+HADGD K N Sbjct: 241 ATLSDFTTVKLNVQENKIYRISKLVEQFSGLHIPSNKPVVGENVFTQTAGIHADGDNKKN 300 Query: 311 LYANPILPERFGRKRSYALGKLAGKASISENVKQLGMVLSEVVLQKVLERVIELGDQNKL 370 LY N +LPERFGR R YALGK +GKA+I +N+ +LG+ L L KV +++IELGD+ + Sbjct: 301 LYFNDLLPERFGRTRKYALGKTSGKANILKNLLELGIKLEPEELSKVTQKIIELGDRKER 360 Query: 371 VTPEDLPFIIADV-SGRTGEKVLTIKSCNIHSGIGIRPHAQIELEYQGKIHKEISEGDGG 429 VT EDLP+II+DV + +K ++I+ ++ G++P Q++L+++ + ++ + G+G Sbjct: 361 VTTEDLPYIISDVLQNNSIKKDISIEGYHMTHSKGLKPTVQLKLKFKDQFYEAHASGNGQ 420 Query: 430 YDAFMNALTKITNRLGISIPKLIDYEVRIPPGGKTDALVETRITWNKSLDLEEDQTFKTM 489 +D+FM AL KI L +PKL D+ V IPPGGKTDA VET ITW + + KT Sbjct: 421 FDSFMLALQKIYKSLNKKLPKLTDFSVSIPPGGKTDAFVETVITW------DYGRIIKTK 474 Query: 490 GVHPDQTVAAVHATEKMLNQILQ 512 G+ DQTVAA+ ATEKMLN I Q Sbjct: 475 GLDSDQTVAAMMATEKMLNIIEQ 497 Lambda K H 0.315 0.134 0.379 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 793 Number of extensions: 31 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 516 Length of database: 504 Length adjustment: 34 Effective length of query: 482 Effective length of database: 470 Effective search space: 226540 Effective search space used: 226540 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory