Align Putative (R)-citramalate synthase CimA; EC 2.3.1.182 (uncharacterized)
to candidate 3607175 Dshi_0596 2-isopropylmalate synthase (RefSeq)
Query= curated2:Q8TYM1 (509 letters) >FitnessBrowser__Dino:3607175 Length = 525 Score = 357 bits (915), Expect = e-103 Identities = 212/511 (41%), Positives = 301/511 (58%), Gaps = 16/511 (3%) Query: 7 DADPPDEVRIFDTTLRDGEQTPGVALTPEEKLRIARKLDEIGVDTIEAGFAAASEGELKA 66 D D V IFDTTLRDGEQ+PG +T +EKL IA LDE+GVD IEAGF AS+G+ A Sbjct: 3 DKTDQDRVLIFDTTLRDGEQSPGATMTHDEKLEIAALLDEMGVDIIEAGFPIASDGDFAA 62 Query: 67 IRRIAREELDAEVCSMARMVKGDVDAAVEAEADA----VHIVVPTSEVHVKKKLRMDREE 122 + IA+ +++ +C +AR D+D EA A +H + TS +H + + +E Sbjct: 63 VSEIAKNSVNSVICGLARANFKDIDRCWEAVRHARQPRIHTFIGTSPLH-RAIPNLTMDE 121 Query: 123 VLERAREVVEYARDHGLTVEISTEDGTRTELEYLYEVFDACLEAGAERLGYNDTVGVMAP 182 + +R + V +AR+ V+ S D TRTE +YL V + ++AGA + DTVG AP Sbjct: 122 MADRIHDTVTHARNLCDNVQWSPMDATRTEYDYLCRVIEIAIKAGATTINIPDTVGYTAP 181 Query: 183 -EGMFLAVKKLRERVG-EDVILSVHCHDDFGMATANTVAAVRAGARQVHVTVNGIGERAG 240 E L + + + G EDV + HCH+D GMATAN +AAV AGARQV T+NG+GERAG Sbjct: 182 RESADLIARLIADVPGAEDVTFATHCHNDLGMATANALAAVDAGARQVECTINGLGERAG 241 Query: 241 NAALEEVVVVL---EELYGVDTGIRTERLTELSKLVERLTGVRVPPNKAVVGENAFTHES 297 N ALEEVV+ L ++ T I T ++ +S+ V ++G V NKA+VG+NAF HES Sbjct: 242 NTALEEVVMALRVRNDIMPYQTRIDTRKIMNISRRVAAVSGFAVQFNKAIVGKNAFAHES 301 Query: 298 GIHADGILKDESTYEPIPPEKVG-HERRFVLGKHVGTSVIRKKLKQMGVDVDDEQLLEIL 356 GIH DG+LK+ T+E + PE +G E V+GKH G + +R KLK +G ++ D QL ++ Sbjct: 302 GIHQDGMLKNAETFEIMRPEDIGLSETNLVMGKHSGRAALRAKLKDLGYELADNQLKDVF 361 Query: 357 RRLKRLGDRGKRITEADLRAIAEDVLGRPAERDIEVEDFTTVTGKRTIPTASIVVKIDGT 416 R K L DR K I + DL A+ + PA + V+ + G +A + + IDG Sbjct: 362 VRFKALADRKKEIYDEDLVALMSESSSDPARERLSVKFLRVICGTEAPQSADLTLSIDGV 421 Query: 417 RKEAASTGVGPVDATIKALERALKDQGIDFELVEYRAEALTGGTDAITHVDVKLRDPETG 476 K+ + G GPVDAT A+ +AL +L Y+ A+T GTDA V V++ E G Sbjct: 422 DKQVTAQGDGPVDATFNAV-KALFPHTARLQL--YQVHAVTEGTDAQATVTVRME--EDG 476 Query: 477 DIVHSGSSREDIVVASLEAFIDGINSLMARK 507 IV ++ D VVAS +A++ +N L+ R+ Sbjct: 477 RIVSGQAADTDTVVASAKAYVAALNRLILRR 507 Lambda K H 0.315 0.134 0.367 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 622 Number of extensions: 32 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 525 Length adjustment: 35 Effective length of query: 474 Effective length of database: 490 Effective search space: 232260 Effective search space used: 232260 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory