Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate 3608367 Dshi_1769 6-phosphogluconate dehydratase (RefSeq)
Query= curated2:Q5SIY0 (555 letters) >FitnessBrowser__Dino:3608367 Length = 601 Score = 249 bits (637), Expect = 2e-70 Identities = 182/539 (33%), Positives = 267/539 (49%), Gaps = 33/539 (6%) Query: 34 VGVVNTFTDGMPCNFHLRELAQHLKAGLKEAGLFP-FEFGAPAISDGISMGTPGMRASLV 92 +G+V + D + + ++ +K + AG G PA+ DG++ G GM SL Sbjct: 69 IGIVTAYNDMLSAHQPFKDYPDKIKEAARRAGATAQVAGGVPAMCDGVTQGQVGMELSLF 128 Query: 93 SREVIADSVELIAQGYLYDGMVGLSACDKTIPGTAMGVIRSG-VPGMILYGGTIAPGEWQ 151 SR+VIA + + +D L CDK +PG + G +PG+ + G + G Sbjct: 129 SRDVIALATGVALSHNTFDAAAYLGVCDKIVPGLVIAAATFGYLPGVFVPAGPMVSGLPN 188 Query: 152 GRKLTIVEVFEAVGQRAAGKISEEELLEIERRAIPGPGACGGQYTANTMAMALEALGLSP 211 +K + + F AAG+I ++L+E E + GPG C TAN+ M +E +GL Sbjct: 189 DQKAKVRQQF------AAGEIGRDKLMEAEMASYHGPGTCTFYGTANSNQMLMEFMGLHL 242 Query: 212 VGYNAIPAVHPEKERATKEAGKILA--WAIAHDWKPK-DFLTRKSFLNAIAAVAATGGST 268 G + + P +E T A + LA + ++++P D L K+F+N I + ATGGST Sbjct: 243 PGASFVNPGTPLREALTAAAAERLAAITQLGNEYRPVCDILDAKAFVNGIVGLMATGGST 302 Query: 269 NAVLHLLALAKEAGVELSLDDFDQISRKTPVIADLRPWGTYTAWELYEAGGTALVFKRLL 328 N V+HL A+A+ AGV L L DF IS TP++A + P G + AGG A + LL Sbjct: 303 NLVIHLPAMARAAGVILDLQDFADISEATPLMARVYPNGLADVNHFHAAGGLAYMIGELL 362 Query: 329 EAGLLFGEEKTLTGRTLAEE------VERAYREQEG------QKVVFPVEKALKPHGGLV 376 GLL + KT+ G LA+ ++ R ++G K++ P P GGL Sbjct: 363 SEGLLHPDTKTIAGDGLADYAREPKLIDGVLRWEDGPRRSLNAKILRPASDGFAPSGGLK 422 Query: 377 VLKGNLAPKGAVLKLAGTERTYFEGPARVFDSEEAAMEKVLKGEIRPGDVVVIRYVGPKG 436 LKGNL + ER E ARVF+ + A + GE VV++R+ GPK Sbjct: 423 ELKGNLGRGVMKVSAVAPERHVIEARARVFEDQGAVKDAFKAGEFTEDTVVIVRFQGPK- 481 Query: 437 APGMPEMLSVTSAI-VGEGLGPEVALLTDGRFSGGTRGLMIG-HIAPEAFVGGPIALLEE 494 A GMPE+ ++T + V + G +VAL+TDGR SG + + H+APEA GG +A + Sbjct: 482 ANGMPELHALTPVLAVLQDRGLKVALVTDGRMSGASGKVPAAIHVAPEALDGGLMAKVRT 541 Query: 495 GDRIRIDVEGRRLEVLLPEEELERRRARWRPRPPAFTHG----LFARYAALVRQADEGA 549 GD +R+D LEVL P E RA P +HG LF + V A GA Sbjct: 542 GDLVRVDAVAGVLEVLEPGVE---DRAPAMPDLSGNSHGIGRELFDVFRTTVGPASTGA 597 Lambda K H 0.318 0.138 0.405 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 950 Number of extensions: 50 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 555 Length of database: 601 Length adjustment: 36 Effective length of query: 519 Effective length of database: 565 Effective search space: 293235 Effective search space used: 293235 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory