GapMind for Amino acid biosynthesis

 

Alignments for a candidate for serA in Dyella japonica UNC79MFTsu3.2

Align phosphoglycerate dehydrogenase (EC 1.1.1.95) (characterized)
to candidate N515DRAFT_3581 N515DRAFT_3581 D-3-phosphoglycerate dehydrogenase

Query= BRENDA::Q9I6H5
         (409 letters)



>FitnessBrowser__Dyella79:N515DRAFT_3581
          Length = 410

 Score =  522 bits (1344), Expect = e-153
 Identities = 259/409 (63%), Positives = 325/409 (79%), Gaps = 2/409 (0%)

Query: 3   KTSLDKSKIKFLLLEGVHQNAVDTLKAAGYTNIEYLKTALSGDELKERIADAHFIGIRSR 62
           KTS  K+ IK LLLEGV Q+AV+  + AGY+ IE+ + +L   ELK RIA+AH +GIRSR
Sbjct: 2   KTSYPKADIKVLLLEGVSQSAVEVFRRAGYSQIEFHEKSLPEAELKARIAEAHIVGIRSR 61

Query: 63  TQLTEEVFDCAKKLIAVGCFCIGTNQVDLNAARERGIAVFNAPYSNTRSVAELVLAEAIL 122
           + LT +V + A++LIAVGCFCIGTNQVDL  AR++G+ VFNAPYSNTRSVAELV+AEAI+
Sbjct: 62  SHLTADVLEQARRLIAVGCFCIGTNQVDLETARQQGVPVFNAPYSNTRSVAELVIAEAIM 121

Query: 123 LLRGIPEKNASCHRGGWIKSAANSFEIRGKKLGIVGYGSIGTQLSVLAEALGMQVFFYDT 182
           LLRGIP+KNA CHRGGW KSAA SFE+R K LGIVGYG IGTQ+ VLAE+LGM+V F+D 
Sbjct: 122 LLRGIPQKNALCHRGGWTKSAAGSFEVRDKVLGIVGYGHIGTQVGVLAESLGMRVIFHDI 181

Query: 183 VTKLPLGNAVQIGSLHELLGMSDIVSLHVPELPSTQWMIGEKEIRAMKKGGILINAARGT 242
            TKL LGNA   GSL +LL  +D+V+LHVPE P+T+ MIG  E+  M+KG  LINA+RGT
Sbjct: 182 ETKLSLGNARAAGSLDDLLERADVVTLHVPETPATKLMIGATELAKMRKGAALINASRGT 241

Query: 243 VVELDHLAAAIKDEHLIGAAIDVFPVEPKSNDEEFASPLRGLDRVILTPHIGGSTAEAQA 302
           VV++D LAAA++  H+ GAA+DVFP+EPK ND+ F SPL G+D VILTPHIGGST EAQ 
Sbjct: 242 VVDIDALAAALRTGHVAGAAVDVFPLEPKGNDDPFVSPLVGMDNVILTPHIGGSTLEAQD 301

Query: 303 NIGLEVAEKLVKYSDNGTSVSSVNFPEVALPSHPGKHRLLHIHANIPGVMSEINKVFADN 362
           NIG+EVA KLV+YSDNG+++S+VNFPEV LP HP   RLLHIH N+PGV+S IN++F+  
Sbjct: 302 NIGIEVASKLVRYSDNGSTLSAVNFPEVTLPEHPNSRRLLHIHRNVPGVLSRINELFSAG 361

Query: 363 GINVSGQYLQTNEKVGYVVIDVDAEYSDLAL--EKLQQVNGTIRSRVLF 409
            IN+  Q+LQT+ +VGYVVIDV A+ +      ++L  + GT+RSRVL+
Sbjct: 362 NINIDAQFLQTDSQVGYVVIDVSADEAQAGALKDRLAAIPGTLRSRVLY 410


Lambda     K      H
   0.317    0.135    0.381 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 477
Number of extensions: 11
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 409
Length of database: 410
Length adjustment: 31
Effective length of query: 378
Effective length of database: 379
Effective search space:   143262
Effective search space used:   143262
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory