Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate N515DRAFT_2409 N515DRAFT_2409 dihydroxy-acid dehydratase
Query= curated2:Q8TW40 (549 letters) >FitnessBrowser__Dyella79:N515DRAFT_2409 Length = 574 Score = 352 bits (903), Expect = e-101 Identities = 218/551 (39%), Positives = 312/551 (56%), Gaps = 18/551 (3%) Query: 7 KEGVERTPHRALLRACGLTDEEMD-RPFVAVVNTYSEVVPGHMHLDKVTEAVKAGIRMAG 65 +EG + +R+ L+ GL ++ D RP + + NT+SE+ P + ++ E VK G+ AG Sbjct: 17 REGKQGFYYRSWLKGLGLPNDMFDGRPVIGICNTWSELTPCNSSFRELAEHVKRGVYEAG 76 Query: 66 GVPFEVETIALCDGIAMNTPGMKYSLPSRELVADTIETVIEAHRFDGFVAIVSCDKMVPG 125 G P E ++L + M M + R L + +E I A+ DG V ++ CDK P Sbjct: 77 GFPLEFPVMSLGE-TQMRPTAMLF----RNLASMDVEESIRANPIDGVVLLMGCDKTTPA 131 Query: 126 ALMAAARLDLPAAIVTGGPMEPGCVDGERVD----LIDAFEAVGAYEEGEISEEELEELE 181 +M AA ++LP ++GGP G G+ + +I E V A GE+++EE E E Sbjct: 132 LMMGAASVNLPTIGLSGGPSLSGNWRGQPIGSGTGVIRMSEMVRA---GELAQEEFVEAE 188 Query: 182 QRACPGPGSCAGMFTANTMACMTEVLGMSEFNCAATPATEAEKLRVAKLTGMRIVEAIEE 241 GSC M TA+TMA M E LG+S AA PA ++ + R+A L+G RIVE + E Sbjct: 189 ACMQRSKGSCMTMGTASTMASMVEALGLSLPENAAIPAVDSRRFRLAHLSGRRIVEMVHE 248 Query: 242 GITARDVLTREAFLDAIRVDMALGGSTNTVLHLLAIAREADVELSLDDFDELSRETPHLC 301 + +LTR AF +AIR + A+GGSTN V+HLLA+A VEL+LDD+D L P L Sbjct: 249 DLRMSKILTRAAFENAIRANAAIGGSTNAVIHLLALAGRLGVELALDDWDRLGSHLPCLV 308 Query: 302 AMRPGGPYTMRDLYEAGGVPAVMKELADDLHLDRIDFAGRSMRERVERTEVKDREVIRPK 361 ++P G Y M D Y AGG+PAV++E+A LHL + GR++ + + +R+VIRP Sbjct: 309 NLKPSGDYLMEDFYYAGGLPAVLREIAPHLHLGALTANGRTLGDNIATAPCWNRDVIRPI 368 Query: 362 EDPVHEEGGIVVLYGNLAPKGAVIKTAALSEEMYEHEGPAVVFDSEEEATEAI--LGGDI 419 E+P+ E GI VL GNLAP GAVIK +A S + +H G AVVF++ ++ I DI Sbjct: 369 EEPLKREAGIAVLRGNLAPDGAVIKPSAASAHLLQHRGRAVVFENIDDFKARIDDEALDI 428 Query: 420 DPGDVVVIRYEGPAGGPGMREM--LTPTAALCGMGLDDSVALVTDGRFSGGTRGPCVGHV 477 D V+V++ GP G PGM E+ + L G+ D + ++D R SG G V H Sbjct: 429 DETCVMVLKNCGPRGYPGMAEVGNMPLPPKLLRRGITD-IVRISDARMSGTAYGTVVLHA 487 Query: 478 SPEAYRGGPIAVVEEGDTIRLDVRERRLEVDVEDEELEARLEEWEPPEDEVTGYLRRYRE 537 SPEA GG +A+V +GD I LDV RRL +D+ D+EL R W+ P G+ + Y + Sbjct: 488 SPEAAAGGNLALVRDGDFIELDVPGRRLHLDLADDELARRRAAWKAPPPPERGWAKLYVD 547 Query: 538 LVRGADEGAVL 548 V+ A GA L Sbjct: 548 HVQQAHLGADL 558 Lambda K H 0.317 0.137 0.396 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 798 Number of extensions: 32 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 549 Length of database: 574 Length adjustment: 36 Effective length of query: 513 Effective length of database: 538 Effective search space: 275994 Effective search space used: 275994 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory