Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate N515DRAFT_3177 N515DRAFT_3177 6-phosphogluconate dehydratase
Query= curated2:A8AB39 (552 letters) >FitnessBrowser__Dyella79:N515DRAFT_3177 Length = 606 Score = 240 bits (612), Expect = 1e-67 Identities = 178/514 (34%), Positives = 263/514 (51%), Gaps = 40/514 (7%) Query: 32 PLIGVANSWNEIVPGHVHLDKVAEAVKAGIRMAGGTPLEFGTI-AVCDGIAMGHEGMRYS 90 P +G+ S+N+++ H ++ E ++ R +G T G + A+CDG+ G EGM S Sbjct: 70 PNLGIVTSYNDMLSAHQPYERYPELIRRIARESGITAQVAGGVPAMCDGVTQGREGMELS 129 Query: 91 LPSREVIADTVEIMVEAHRLDAVVMVTNCDKITPGFLLAAARL-EVPVILINGGPMMPGV 149 L SR++IA + + D + + CDKI PG L+ A +P I + GGPM G+ Sbjct: 130 LFSRDLIAMATAVSLSHDMFDGTLYLGICDKIVPGLLIGALSFGHLPGIFVPGGPMPSGI 189 Query: 150 YGKERIDFKDLMERMNVLIKEGRTE--ELRKLEESALPGPGSCAGLFTANTMNMLSEAMG 207 +++ ++ EG+ EL + E +A PG+C TAN+ ML E MG Sbjct: 190 TNEQK-------SKVRQAYAEGKANRAELLEAEAAAYHAPGTCTFYGTANSNQMLMEIMG 242 Query: 208 LMLPGASTVPAVEARRLWYAKLTGMRIVKMVEEG---LTPDKILTRKALENAIAVDMALG 264 L LPGAS V R R+ + G L I+ +A+ N + A G Sbjct: 243 LHLPGASFVAPDTPLRDALTAEAVHRVAALSAHGDNHLPIGHIVDERAIINGVIGLHATG 302 Query: 265 GSTNSVLHLEALAYELGIDLPLEVFDEISRKVPHIASISPSGRHFVVDLDRAGGIPAVLK 324 GSTN +LHL A+A GI L + FD +S VP +A + P+G V AGG+ ++ Sbjct: 303 GSTNHLLHLVAMARAAGIQLRWDDFDALSSVVPLLARVYPNGYADVNQFHDAGGMAFLID 362 Query: 325 ELGEAGLIHKDALTV----------------TGKTVWENV-KDAAVLDREVIRPLDNPYS 367 +L AGL+H D TV +G W V K++ +R V+R + P+ Sbjct: 363 QLLGAGLLHGDVRTVFGTGLDGYAQVPSLDASGALQWTPVAKESG--NRGVLRGMAEPFR 420 Query: 368 PFGGLAILKGSLAPNGAVVKASAVKRELWKFKGVARVFDREEDAVKAIRGGEIEPGTVIV 427 GGL +L G+L AV+K S+V + + A VF +++ KA GE+ + V Sbjct: 421 ADGGLRMLAGNL--GRAVIKVSSVPDDRQVIEAPAVVFHDQDEVRKAFERGELNRDFIAV 478 Query: 428 IRYEGPRGGPGMREM--LTATAAVMALGLGDKVALVTDGRFSGAT-RGPAIGHVSPEAAA 484 +R++GPR GM E+ LT T AV+ G ++AL+TDGR SGA+ R PA HV+PEA A Sbjct: 479 VRFQGPR-AIGMPELHKLTPTLAVLQ-DRGYRIALLTDGRMSGASGRVPAAIHVTPEAQA 536 Query: 485 GGPIALVQDGDEIVIDIEKRRLDLLVDEKELEER 518 G IA ++DGD I +D + LD+LVD E R Sbjct: 537 QGAIARIRDGDLIRLDATRGTLDVLVDASEFASR 570 Lambda K H 0.319 0.138 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 848 Number of extensions: 42 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 606 Length adjustment: 36 Effective length of query: 516 Effective length of database: 570 Effective search space: 294120 Effective search space used: 294120 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory