Align 4-aminobutyrate aminotransferase GabT; (S)-3-amino-2-methylpropionate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.22 (characterized)
to candidate HSERO_RS19685 HSERO_RS19685 4-aminobutyrate aminotransferase
Query= SwissProt::P22256 (426 letters) >FitnessBrowser__HerbieS:HSERO_RS19685 Length = 456 Score = 228 bits (580), Expect = 4e-64 Identities = 147/425 (34%), Positives = 230/425 (54%), Gaps = 25/425 (5%) Query: 8 MQRRSQAIPRGVGQIHPIFADRAENCRVWDVEGREYLDFAGGIAVLNTGHLHPKVVAAVE 67 + R++++ RG G++ PI D+A D +G ++D + G+ V + G +P+VV A+ Sbjct: 33 LSARTESMARGGGRM-PIAMDQAFGVTFKDPDGNTFIDLSAGVGVSSVGRCNPRVVEAIR 91 Query: 68 AQLKKLSHTCFQVLAYEPYL--ELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVKIARAA 125 Q + L H+ + L ++ EIM + GD T GS+A+E AVK A+ Sbjct: 92 KQSESLMHSMEVNSSKRTELAAKISEIMPDGLRGDCI--TFFTQGGSDALEAAVKFAKRV 149 Query: 126 TKRSGTIAFSGAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPL-------HGI 178 T R IAF G YHG + + ALT Y G G G V A YP H Sbjct: 150 TGRHQIIAFHGGYHGIWNASNALTTGT-AYRKGFGPFMGGVIHAPYPYAYRFPFDTSHKS 208 Query: 179 SEDDAIASIHRIFKND-AAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLI 237 +E A + + A +D+AA+++EPVQGEGG+ SP F+Q LR CD G +LI Sbjct: 209 AEQIAGEYVDYLLNTPYTAADDVAAVIVEPVQGEGGYVPPSPEFLQILRKACDRSGALLI 268 Query: 238 ADEVQSGAGRTGTLFAMEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGGT 297 DEVQ+GAGRTG ++A+E GV PD+ TF K I G P+AG+ R+++ + G T Sbjct: 269 VDEVQAGAGRTGKMWAVEHSGVKPDMLTFGKGIGGDMPMAGLVMRSDLAAKIPDGSQPNT 328 Query: 298 YAGNPIACVAALEVLKVFEQE--NLLQKANDLGQKLKDGLLAIAEKHPEIGDVRGLGAMI 355 +A N I+ AL + + + +L+ +A+ LG + ++ + + P +G+VRG G MI Sbjct: 329 FAANSISAAVALTNISILQDPRLDLVNRAHTLGLEAQERIRSF--NSPWVGEVRGRGLMI 386 Query: 356 AIELFEDGDHNKPDAKLTAEIVARARD----KGLILLSCGPYYNVLRILVPLTIEDAQIR 411 IEL E+ + +P L+ E + + D G++++ CG Y NV+R++ LTI + + Sbjct: 387 GIELVENRETREP---LSREKLGKLMDYVVGHGVLMIPCGRYTNVMRVMPSLTIPRSLMF 443 Query: 412 QGLEI 416 +GL+I Sbjct: 444 KGLDI 448 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 525 Number of extensions: 31 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 456 Length adjustment: 32 Effective length of query: 394 Effective length of database: 424 Effective search space: 167056 Effective search space used: 167056 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory