Align Aspartate--tRNA(Asp/Asn) ligase; EC 6.1.1.23; Aspartyl-tRNA synthetase; AspRS; Non-discriminating aspartyl-tRNA synthetase; ND-AspRS (uncharacterized)
to candidate 15054 b0930 asparaginyl-tRNA synthetase (NCBI)
Query= curated2:Q8TXG4 (431 letters) >lcl|FitnessBrowser__Keio:15054 b0930 asparaginyl-tRNA synthetase (NCBI) Length = 466 Score = 179 bits (455), Expect = 1e-49 Identities = 137/453 (30%), Positives = 217/453 (47%), Gaps = 58/453 (12%) Query: 18 EVRLAGWVHEVRDL-GGIKFVLLRDRT------GIVQLTLPKQKVPKETFEKVPKLTKES 70 EV + GWV RD GI F+ + D + ++ +LP E V +LT Sbjct: 19 EVTVRGWVRTRRDSKAGISFLAVYDGSCFDPVQAVINNSLPNYN------EDVLRLTTGC 72 Query: 71 VIRVEGTVQANEKAPGGVEVIPQRIEV---LSESDTHLPLDPTGKVDADLDTRLDARVLD 127 + V G V A+ E+ ++EV + + DT+ P ++ + L Sbjct: 73 SVIVTGKVVASPGQGQQFEIQASKVEVAGWVEDPDTY----PMAAKRHSIEYLREVAHLR 128 Query: 128 LRREEPQAIFKIRNVVTTAIREFLEERGFIEVHTPKIIASATEGGTELFPVV-------- 179 R A+ ++R+ + A+ F E+GF V TP I AS TEG E+F V Sbjct: 129 PRTNLIGAVARVRHTLAQALHRFFNEQGFFWVSTPLITASDTEGAGEMFRVSTLDLENLP 188 Query: 180 ------------YFERDAYLAQSPQLYKQMLMAAGFERVYEIGPIFRAEEHNTRRHLNEA 227 +F ++++L S QL + A ++Y GP FRAE NT RHL E Sbjct: 189 RNDQGKVDFDKDFFGKESFLTVSGQLNGETY-ACALSKIYTFGPTFRAENSNTSRHLAEF 247 Query: 228 ISVDIEMSFIESEEDVMRVLEELLAHVFRKVREECEKEL---------EALDRELPELET 278 ++ E++F D+ + E +L +VF+ V EE ++ +A+ R +E Sbjct: 248 WMLEPEVAFANLN-DIAGLAEAMLKYVFKAVLEERADDMKFFAERVDKDAVSRLERFIEA 306 Query: 279 PFERITYEETLDLLSEHGIEVE----WGEDLPTEAERKLGEI-FEEPFFITEWPRETRPF 333 F ++ Y + + +L G + E WG DL +E ER L E F+ P + +P++ + F Sbjct: 307 DFAQVDYTDAVTILENCGRKFENPVYWGVDLSSEHERYLAEEHFKAPVVVKNYPKDIKAF 366 Query: 334 YTMAKDDEVTTA-FDLMYQGL-ELASGAQREHRYDVLVRQIEEQGLSPEDFRHYLEAFKY 391 Y +D T A D++ G+ E+ G+QRE R DVL ++ E GL+ ED+ Y + +Y Sbjct: 367 YMRLNEDGKTVAAMDVLAPGIGEIIGGSQREERLDVLDERMLEMGLNKEDYWWYRDLRRY 426 Query: 392 GMPPHGGWGLGLERTLMTITGAENIREVTLFPR 424 G PH G+GLG ER + +TG +N+R+V FPR Sbjct: 427 GTVPHSGFGLGFERLIAYVTGVQNVRDVIPFPR 459 Lambda K H 0.318 0.138 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 486 Number of extensions: 32 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 431 Length of database: 466 Length adjustment: 33 Effective length of query: 398 Effective length of database: 433 Effective search space: 172334 Effective search space used: 172334 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory