GapMind for Amino acid biosynthesis

 

Alignments for a candidate for lysN in Escherichia coli BW25113

Align 2-aminoadipate transaminase; 2-aminoadipate aminotransferase; L-2AA aminotransferase; EC 2.6.1.39 (characterized)
to candidate 15422 b1302 GABA aminotransferase, PLP-dependent (NCBI)

Query= SwissProt::Q88FI7
         (416 letters)



>FitnessBrowser__Keio:15422
          Length = 421

 Score =  326 bits (835), Expect = 9e-94
 Identities = 175/397 (44%), Positives = 240/397 (60%), Gaps = 11/397 (2%)

Query: 23  NAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRLTHYAFNAAPHGPYLALME 82
           NA + D +G  YIDF  GI VLN GH +P +V A++ Q  + TH A+   P+  Y+ L E
Sbjct: 31  NATLKDVEGNEYIDFAAGIAVLNTGHRHPDLVAAVEQQLQQFTHTAYQIVPYESYVTLAE 90

Query: 83  QLSQFVPVSYPLAGMLTNSGAEAAENALKVARGATGKRAIIAFDGGFHGRTLATLNLNGK 142
           +++   PVS         +GAEA ENA+K+AR  TG+  +IAF GGFHGRT  T+ L GK
Sbjct: 91  KINALAPVSGQAKTAFFTTGAEAVENAVKIARAHTGRPGVIAFSGGFHGRTYMTMALTGK 150

Query: 143 VAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSVELAVEDVAAFIFEPVQGE 202
           VAPYK   G  PG VYH+PYPS   G++ + +L A++RLF  ++  + VAA IFEPVQGE
Sbjct: 151 VAPYKIGFGPFPGSVYHVPYPSDLHGISTQDSLDAIERLFKSDIEAKQVAAIIFEPVQGE 210

Query: 203 GGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFAFPRLGIEPDLLLLAKSIA 262
           GGF         A+RR CDE GI++I DE+QSGF RTG+ FA      +PDL+ +AKS+A
Sbjct: 211 GGFNVAPKELVAAIRRLCDEHGIVMIADEVQSGFARTGKLFAMDHYADKPDLMTMAKSLA 270

Query: 263 GGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASLAQMTDENLA----TWGERQ 318
           GGMPL  VVG   +M A   GGLGGTY+GNP++ AAA A L  +  E+L       G+R 
Sbjct: 271 GGMPLSGVVGNANIMDAPAPGGLGGTYAGNPLAVAAAHAVLNIIDKESLCERANQLGQRL 330

Query: 319 EQAIVSRYERWKASGLSPYIGRLTGVGAMRGIEFANAD-GSPAPAQLAKVMEAARARGLL 377
           +  ++   E        P I  + G+G+M  +EF +   G P+ A   K+ + A A+GLL
Sbjct: 331 KNTLIDAKES------VPAIAAVRGLGSMIAVEFNDPQTGEPSAAIAQKIQQRALAQGLL 384

Query: 378 LMPSGKARHIIRLLAPLTIEAEVLEEGLDILEQCLAE 414
           L+  G   ++IR L PLTI     +  + IL+  L++
Sbjct: 385 LLTCGAYGNVIRFLYPLTIPDAQFDAAMKILQDALSD 421


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 515
Number of extensions: 17
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 421
Length adjustment: 32
Effective length of query: 384
Effective length of database: 389
Effective search space:   149376
Effective search space used:   149376
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory