GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argA in Sphingomonas koreensis DSMZ 15582

Align glutamate N-acetyltransferase/amino-acid acetyltransferase; EC 2.3.1.35 2.3.1.1 (characterized)
to candidate Ga0059261_4030 Ga0059261_4030 glutamate N-acetyltransferase (EC 2.3.1.35)

Query= CharProtDB::CH_000559
         (406 letters)



>FitnessBrowser__Korea:Ga0059261_4030
          Length = 407

 Score =  263 bits (672), Expect = 7e-75
 Identities = 162/397 (40%), Positives = 218/397 (54%), Gaps = 6/397 (1%)

Query: 13  LPDIDGIALYTAQAGVKKPGHTDLTLIAVAAGSTVGAVFTTNRFCAAPVHIAKSHLFDED 72
           LP I+G+ L  A+A  K     DLT + +  G++V  V TT++  +  V   +  L    
Sbjct: 14  LPPIEGVTLRVARARYKTWDRCDLTFVTLDEGTSVAGVTTTSKCPSPEVEWCREALV-LG 72

Query: 73  GVRALVINTGNANAGTGAQGRIDALAVCAAAARQIGCKPNQVMPFSTGVILEPLPADKII 132
             RALV+N GN+NA TG +GR    A+ A  A  + C+P+ V   STGVI  PLP DK  
Sbjct: 73  KARALVVNAGNSNAFTGNRGRAAVEAIAARVAGHLSCQPSDVFVSSTGVIGVPLPIDKAE 132

Query: 133 AALPKM---QPAFWNEAARAIMTTDTVPKAASREGKVGDQHTVRATGIAKGSGMIHPNMA 189
           A L      +P  W + A+ I TTDT  K A     VG + TV   G+ KGSGMI P+MA
Sbjct: 133 AGLDAAFAAEPCGWEDVAKTIGTTDTFEKGAVTTAVVGGK-TVSLVGVIKGSGMIAPDMA 191

Query: 190 TMLGFIATDAKVSQPVLQLMTQEIADETFNTITVDGDTSTNDSFVIIATGKNSQSEIDNI 249
           TMLG++ TDA V    LQ    +    +F+ ITVD DTST+D+ +  ATGK   + + + 
Sbjct: 192 TMLGYVFTDAAVDPAFLQRALSDANTRSFSCITVDSDTSTSDTVLAFATGKAGNTPLTDD 251

Query: 250 ADPRYAQLKELLCSLALELAQAIVRDGEGATKFITVRVENAKTCDEARQAAYAAARSPLV 309
                   +  L  L L LA  +VRDGEGA+KFI + VE A++   A + A + A SPLV
Sbjct: 252 DSDGADAFRAALADLCLRLAHLVVRDGEGASKFIRIDVEGAESDASAHRIALSIANSPLV 311

Query: 310 KTAFFASDPNLGKRLAAIGYADVADLDTDLVEMYLDDILVAEHGGRAASYTEAQGQAVMS 369
           KTA    D N G+ + A+G A     D D + +    + VA  G     Y EA   A + 
Sbjct: 312 KTAIAGEDANWGRIVMAVGKAG-EPADRDRLAITFGGVQVASGGLAVEGYDEAPVAAHLK 370

Query: 370 KDEITVRIKLHRGQAAATVYTCDLSHGYVSINADYRS 406
             EI + + L  G+  ATV+TCDL+HGY+SINADYRS
Sbjct: 371 GQEIEIGVDLGLGEGRATVWTCDLTHGYISINADYRS 407


Lambda     K      H
   0.317    0.130    0.367 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 358
Number of extensions: 17
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 407
Length adjustment: 31
Effective length of query: 375
Effective length of database: 376
Effective search space:   141000
Effective search space used:   141000
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory