Align Glutamyl-tRNA(Gln) amidotransferase subunit A; Glu-ADT subunit A; EC 6.3.5.7 (uncharacterized)
to candidate Ga0059261_1617 Ga0059261_1617 Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit and related amidases
Query= curated2:A7NKM0 (490 letters) >lcl|FitnessBrowser__Korea:Ga0059261_1617 Ga0059261_1617 Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit and related amidases Length = 533 Score = 224 bits (572), Expect = 4e-63 Identities = 179/505 (35%), Positives = 246/505 (48%), Gaps = 69/505 (13%) Query: 8 TVAQAREMLARGEISSLELTDALLTRIAAVE---PKVRAFLVVDAAGARAQARAADARRA 64 ++ Q + MLA G I+S +LT A L RI ++ PK+R+ + ++ A+AQAR AD R Sbjct: 39 SIEQLQAMLASGRITSAQLTQAYLDRIRVLDRAGPKLRSVIALNPQ-AKAQARRADRNRQ 97 Query: 65 AGDAS-PLLGIPMGIKDVISTQGLRTTCASKMLENYTPVYDATAVARLKAAGAVILGKLN 123 G A PL GIP+ +KD I T TT S L++ DA VARL+AAGA+ILGK N Sbjct: 98 LGIAEGPLFGIPVLVKDNIDTAENATTAGSLALKDNFTKRDAPLVARLRAAGAIILGKTN 157 Query: 124 CDEFA-MGSSTENSAFQQT----RNPWNLERVPGGSSGGSAAAVAAGEAPAALGTDTGGS 178 E+A + S S + RNP+ L+R GSS G+ AA+AA A +GT+T GS Sbjct: 158 LSEWANIRDSDSMSGWSAVGGLVRNPYALDRSACGSSSGTGAAIAASLAAVGVGTETDGS 217 Query: 179 IRQPAALCGITGLKPTYGRVSRYGLVAFASSLDQIGPMARTVRDCAIVLRVIAGADPFDA 238 I P+++ G+ GLKPT G VSR +V +SS D GPMAR+V+D A + + G+D DA Sbjct: 218 IVCPSSMTGLVGLKPTLGAVSRTHVVPISSSQDTAGPMARSVKDAAALFAAMIGSDSADA 277 Query: 239 TCTDYPAPDYEAALTGD-----IRGLRIGVPREYFVAGMQPDVEAAVRTAIEVLREQGAE 293 D A AALT D ++G+RIGV R AG+ A + VLR GAE Sbjct: 278 ATVD--ADARRAALTPDWRRASLKGVRIGVVRPEMRAGL----AALYDAQLAVLRNAGAE 331 Query: 294 VCEISLPHTPYALPVYYLIAPAEASANLARF--------------DGVRYGLRVP----- 334 + E+ L P + + + E ++LA + D + + P Sbjct: 332 LVEVKLAPPPTLRGLEFKLLQMELKSDLAAYLATTPSSVKVRTLADAIAFNRGSPAELAY 391 Query: 335 -GESYFDELERTRGAGFGPEVRRRIMLGTYALSAGYYDAYYKRAQQVRTLIRRDYQQAFE 393 G+S F+ E+T G + R L+AG D R Sbjct: 392 FGQSIFEMAEKTGGTADPAYAKTRD--DARRLAAGTLDTVLTR----------------N 433 Query: 394 QVDVIAAPTTPTVAFKIGAHTDD---PLAMYLEDVCTLPLNLAGLPGLVVPCGFAEGLPI 450 ++ V+ APTT T H D P A L V AG P L VP G GLP Sbjct: 434 RIAVLVAPTTGTAWLSDPVHGDQGSGPSASQLPAV-------AGYPHLTVPMGLTSGLPA 486 Query: 451 GLQLIGRAFDEESLLRVGDAYQRVT 475 GL IG + E LL +G AY++ + Sbjct: 487 GLSFIGAKWSEGRLLELGHAYEQAS 511 Lambda K H 0.320 0.136 0.398 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 533 Number of extensions: 22 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 490 Length of database: 533 Length adjustment: 35 Effective length of query: 455 Effective length of database: 498 Effective search space: 226590 Effective search space used: 226590 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory