Align Homoaconitase large subunit; HACN; Homoaconitate hydratase; EC 4.2.1.36 (characterized)
to candidate Ga0059261_4223 Ga0059261_4223 3-isopropylmalate dehydratase, large subunit
Query= SwissProt::Q9ZNE0 (418 letters) >lcl|FitnessBrowser__Korea:Ga0059261_4223 Ga0059261_4223 3-isopropylmalate dehydratase, large subunit Length = 478 Score = 173 bits (439), Expect = 9e-48 Identities = 151/474 (31%), Positives = 223/474 (47%), Gaps = 71/474 (14%) Query: 4 TLAEKI-LSHKVGRPVRAGELVVVEVDQVMVVDSIAGSFFKRLEYLEATPRYPERVSIVI 62 TL EKI +H V R R ++ +D+ +V + + F+ L R P+ V Sbjct: 7 TLYEKIWAAHVVER--RDDGTCLIYIDRHLVHEVTSPQAFEGLRANGRRVRRPDLTLAVP 64 Query: 63 DHVAPA-------------ANLEVAKAQKEIREWGKRHGIRVFDVG---RGVCHQVLIEE 106 DH P A+ E A+ + GI F +G+ H V E+ Sbjct: 65 DHNLPTTPRVDAAGNRLPIADRESAQQLAALERNVAEFGIDYFGATAAEQGIVHVVGPEQ 124 Query: 107 GLAQPGWVVVGSDSHSTTYGAVGAFGTGMGATDIALAAASGRTWLRVPESVKVVFRGRLP 166 G PG +V DSH++ +GA+GA G+G +++ A+ L +++++ G L Sbjct: 125 GFTLPGTTLVCGDSHTSAHGALGALAFGIGTSEVEHVLATQTLLLSQSKTMEIRVDGTLG 184 Query: 167 KGVTAKDAALEMVRLLTAEGATYMAVEIHLLDGAEALTRGERMTLANLTVEAGAKAGLV- 225 GV+AKD L ++ A G T VE + + AL+ R+T++N+++E GA++GL+ Sbjct: 185 FGVSAKDVVLAIIGKTGAAGGTGYVVE-YTGEVIRALSIEGRLTVSNMSIEGGARSGLIA 243 Query: 226 --------------VPSGEILEMYRVPDW--LYPDPDARYAKEVEIDLSALTPRVS---- 265 P GE E V W L D A+Y + V ++ S + P ++ Sbjct: 244 PDEKTFAYLKGRPMAPKGEQWEQ-AVAWWKTLPTDAGAQYDRVVTLNGSDIAPSLTWGTS 302 Query: 266 ----VPF---------YVDNVHEVAQVK---------GKR-----VDQVFIGTCTNGRIE 298 VP + D VA K G R V+ +FIG+CTN RIE Sbjct: 303 PEDVVPITGVVPDPESFADPAKRVAAQKSLDYMGLAPGTRMQDIAVENIFIGSCTNSRIE 362 Query: 299 DLRAAAEVLRGRKVAPWVR-LLVVPASSQVLEEAARDGTLLTLLEAGATIGTPGCGPCMG 357 DLRAAA+V++GR VA +R L+VP S V +A +G L+AG PGC C+ Sbjct: 363 DLRAAADVVKGRHVADGIRQALIVPGSGLVKRQAEAEGLDRIFLDAGFEWREPGCSMCLA 422 Query: 358 RHMGVLAPGEVCVSTSNRNFRGRMGAPDAEIYLASPRVAAASAVAGYLTTPEEL 411 + + GE C STSNRNF GR G P A +L SP +AAA+AV G LT +L Sbjct: 423 MNPDKVPAGERCASTSNRNFVGRQG-PGARTHLVSPAMAAAAAVTGRLTDVRDL 475 Lambda K H 0.318 0.135 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 495 Number of extensions: 21 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 418 Length of database: 478 Length adjustment: 33 Effective length of query: 385 Effective length of database: 445 Effective search space: 171325 Effective search space used: 171325 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory