Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate BWI76_RS18100 BWI76_RS18100 phosphogluconate dehydratase
Query= curated2:A8AB39 (552 letters) >FitnessBrowser__Koxy:BWI76_RS18100 Length = 603 Score = 248 bits (633), Expect = 5e-70 Identities = 171/517 (33%), Positives = 264/517 (51%), Gaps = 35/517 (6%) Query: 27 EELRRPLIGVANSWNEIVPGHVHLDKVAEAVKAGIRMAGGTPLEFGTI-AVCDGIAMGHE 85 + + R I + S+N+++ H ++ + ++ + A G + A+CDG+ G + Sbjct: 61 KSMLRNNIAIITSYNDMLSAHQPYERYPDIIRKALHSANAVGQVAGGVPAMCDGVTQGQD 120 Query: 86 GMRYSLPSREVIADTVEIMVEAHRLDAVVMVTNCDKITPGFLLAAARL-EVPVILINGGP 144 GM SL SREVIA + I + + D + + CDKI PG +AA +P I I GP Sbjct: 121 GMELSLLSREVIAMSAAIGLSHNMFDGALYLGVCDKIVPGLAMAALSFGHLPSIFIPSGP 180 Query: 145 MMPGVYGKERIDFKDLMERMNVLIKEGRTEELRKLEESALP--GPGSCAGLFTANTMNML 202 M G+ KE++ R+ L EG+ + + LE A PG+C TANT M+ Sbjct: 181 MASGLANKEKV-------RIRQLYAEGKVDRMALLESEAASYHAPGTCTFYGTANTNQMV 233 Query: 203 SEAMGLMLPGASTVPAVEARRLWYAKLTGMRIVKMVEEG---LTPDKILTRKALENAIAV 259 E MG+ LPG+S V R ++ ++ G + K+ K + N I Sbjct: 234 VEFMGMQLPGSSFVHPDAPLREALTAAAARQVTRLTGNGNEWMPLGKMFDEKVVVNGIVA 293 Query: 260 DMALGGSTNSVLHLEALAYELGIDLPLEVFDEISRKVPHIASISPSGRHFVVDLDRAGGI 319 +A GGSTN +HL A+A GI + + F ++S VP +A + P+G + AGG+ Sbjct: 294 LLATGGSTNHTMHLVAMARAAGIIINWDDFSDLSDVVPLLARLYPNGPADINHFQAAGGV 353 Query: 320 PAVLKELGEAGLIHKDALTVTG-------KTVWENVKD-------AAVLDREVIRPLDNP 365 P +++EL + GL+H+D TV G W N + AA LD VI D P Sbjct: 354 PVLVRELLKGGLLHEDVHTVAGFGLSRYTMEPWLNNGELDWREGAAAPLDEAVIATFDKP 413 Query: 366 YSPFGGLAILKGSLAPNGAVVKASAVKRELWKFKGVARVFDREEDAVKAIRGGEIEPGTV 425 +S GG +L G+L AV+K SAV E + A VF+ + D + A G ++ V Sbjct: 414 FSRHGGTKVLSGNL--GRAVMKTSAVPVENQIIEAPAVVFESQHDVLPAFEAGLLDKDCV 471 Query: 426 IVIRYEGPR--GGPGMREMLTATAAVMALGLGDKVALVTDGRFSGAT-RGPAIGHVSPEA 482 +V+R++GP+ G P + +++ + L K+ALVTDGR SGA+ + P+ HV+PEA Sbjct: 472 VVVRHQGPKANGMPELHKLMPPLGVL--LDRRFKIALVTDGRLSGASGKVPSAIHVTPEA 529 Query: 483 AAGGPIALVQDGDEIVIDIEKRRLDLLVDEKELEERR 519 GG +A V+DGD I ++ + L L VD+ EL R+ Sbjct: 530 YDGGLLAKVRDGDIIRVNGQTGELTLRVDDAELAARQ 566 Lambda K H 0.319 0.138 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 828 Number of extensions: 56 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 603 Length adjustment: 36 Effective length of query: 516 Effective length of database: 567 Effective search space: 292572 Effective search space used: 292572 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory