GapMind for Amino acid biosynthesis

 

Alignments for a candidate for PPYAT in Klebsiella michiganensis M5al

Align Aspartate aminotransferase; AAT; AspAT; Putative 2-aminoadipate transaminase; Transaminase A; EC 2.6.1.1; EC 2.6.1.39 (characterized)
to candidate BWI76_RS10245 BWI76_RS10245 aspartate aminotransferase

Query= SwissProt::P58350
         (410 letters)



>FitnessBrowser__Koxy:BWI76_RS10245
          Length = 402

 Score =  392 bits (1008), Expect = e-114
 Identities = 196/397 (49%), Positives = 267/397 (67%)

Query: 13  QPASRISSIGVSEILKIGARAAAMKREGKPVIILGAGEPDFDTPEHVKQAASDAIHRGET 72
           Q A R+ S+  S    I  +   ++  GK VI LG GE DF TP H+  A  +AI   +T
Sbjct: 5   QIARRMRSVRPSPTAAISDQVRVLEAAGKQVINLGEGELDFATPPHISYAGIEAIVHHQT 64

Query: 73  KYTALDGTPELKKAIREKFQRENGLAYELDEITVATGAKQILFNAMMASLDPGDEVIIPT 132
           KYTA+ GT  LK AI  KF R+N L Y  +EI   +GAKQ++FNA +A+LD G +VIIP 
Sbjct: 65  KYTAVSGTAALKTAIAAKFARDNQLRYRPEEIIAGSGAKQLIFNAFLATLDAGQQVIIPA 124

Query: 133 PYWTSYSDIVHICEGKPVLIACDASSGFRLTAEKLEAAITPRTRWVLLNSPSNPSGAAYS 192
           PYW SY D+V + +G+PV++ CD   G++LT E+L AA+TP TRW++LNSP NP+GA YS
Sbjct: 125 PYWVSYPDMVSLADGEPVIVPCDEQHGWKLTPEQLAAALTPSTRWLILNSPGNPTGAIYS 184

Query: 193 AADYRPLLEVLLRHPHVWLLVDDMYEHIVYDGFRFVTPAQLEPGLKNRTLTVNGVSKAYA 252
             + R L +VL  +PHV ++ DD+YE + YD   F+T AQ  P L +RTLTVNGVSK++A
Sbjct: 185 EPELRALADVLADYPHVLVMADDIYEPLRYDNVPFITFAQAAPQLVSRTLTVNGVSKSHA 244

Query: 253 MTGWRIGYAGGPRELIKAMAVVQSQATSCPSSISQAASVAALNGPQDFLKERTESFQRRR 312
           MTGWR+GYAGGP+ LI AM ++QSQ+TS PSSISQAA++AALN   DF         +RR
Sbjct: 245 MTGWRLGYAGGPQWLIAAMQILQSQSTSNPSSISQAAAIAALNHSADFFDGWLHRLDKRR 304

Query: 313 DLVVNGLNAIDGLDCRVPEGAFYTFSGCAGVLGKVTPSGKRIKTDTDFCAYLLEDAHVAV 372
             V+  + A +GL   +P+GAFY F+ C  ++G+VTP G+ ++ D+    +LLE   VAV
Sbjct: 305 QQVLGMIAATEGLSAGIPQGAFYVFANCQQLIGRVTPGGETLRDDSGLANWLLEHTQVAV 364

Query: 373 VPGSAFGLSPFFRISYATSEAELKEALERIAAACDRL 409
           + GSAFG+  + RI+YA  +  L +A +RIA AC +L
Sbjct: 365 LHGSAFGMPGYLRIAYAVEDGLLAQACQRIAGACAQL 401


Lambda     K      H
   0.318    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 488
Number of extensions: 14
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 410
Length of database: 402
Length adjustment: 31
Effective length of query: 379
Effective length of database: 371
Effective search space:   140609
Effective search space used:   140609
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory