GapMind for Amino acid biosynthesis

 

Alignments for a candidate for OAT in Shewanella oneidensis MR-1

Align Ornithine aminotransferase; OAT; EC 2.6.1.13; Ornithine--oxo-acid aminotransferase (uncharacterized)
to candidate 201879 SO2741 adenosylmethionine--8-amino-7-oxononanoate aminotransferase (NCBI ptt file)

Query= curated2:Q89RB7
         (404 letters)



>FitnessBrowser__MR1:201879
          Length = 461

 Score =  136 bits (343), Expect = 1e-36
 Identities = 124/398 (31%), Positives = 193/398 (48%), Gaps = 43/398 (10%)

Query: 39  DGNRYLDCLSAYSAVSQGHCHPKILAAMVEQAHRLT-LTSRAFHNDQLAPFYEEIAALTG 97
           DG + +D  S++ A   G+ HP IL AM +Q H+L+ +      ++      +++ A+T 
Sbjct: 42  DGRKLIDGTSSWWACVHGYGHPAILTAMEQQLHQLSHVMFGGITHEPAIELCKKLLAMTC 101

Query: 98  SH--KVLPMNSGAEAVESAIK-SVRKW-GYEVKGVPDDQAE-IIVCADNFHGRTLGIVGF 152
               KV   +SG+ AVE AIK +++ W G ++      Q + I+     +HG T   +  
Sbjct: 102 EPLTKVFLCDSGSIAVEVAIKMALQYWQGQDLPLAQKAQKQRILTVKKGYHGDTFAAMSV 161

Query: 153 STDPETRGH--FG-----------PFAPGFRIIPFGDAAALEQAITP---NTVAFLVEPI 196
             DPE   H  FG           P  P    +   D A +++ +     +  A ++EPI
Sbjct: 162 C-DPEGGMHTMFGEAVIKQCFVDAPQTPFGESLHQDDLAPMQRILREQHQDIAAVIIEPI 220

Query: 197 -QGEAGVIIPPAGYFTKVRELCTANNVMLVLDEIQTGLGRTGKLLAEQHEGIEADVTLLG 255
            QG  G+    + Y   +R LC   NV+L+LDEI TG GRTGKL A +H  I  D+  LG
Sbjct: 221 MQGAGGMRFYSSEYLRGLRALCDEYNVLLILDEIATGFGRTGKLFAYEHTDITPDILCLG 280

Query: 256 KALAGGFYPVSAVLSNNEVLGTLRPG-----QHGSTFGGNPLACAVARAAMRVLVEEGMI 310
           KAL GG+  ++A L  + V   +         HG TF GNPLACA A A++ ++ ++   
Sbjct: 281 KALTGGYISLAATLCTDNVAQGISQSPAGVFMHGPTFMGNPLACAAACASLDLINQQEWP 340

Query: 311 ENAARQGARLLEGLKD-IRANTVREVRGRGLMLAVELHPEAGRARRYCEALQGK----GI 365
              A    ++   L D I   +V+ VR  G +  +E+H     A     ALQ +    G+
Sbjct: 341 AQVAAIEQQMQRELADAIDIPSVKAVRVLGAVGVLEMHQAVNTA-----ALQQQFVDLGV 395

Query: 366 LAKDTHGHTIRIAPPLVITS---DEVDWALEQFATTLT 400
             +    + I I PP VI+S    ++  A++Q A T+T
Sbjct: 396 WVR-PFANLIYIMPPYVISSAQLSQLTQAMKQVAATIT 432


Lambda     K      H
   0.319    0.136    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 458
Number of extensions: 24
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 404
Length of database: 461
Length adjustment: 32
Effective length of query: 372
Effective length of database: 429
Effective search space:   159588
Effective search space used:   159588
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory