GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Marinobacter adhaerens HP15

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate GFF1405 HP15_1371 aspartate aminotransferase

Query= SwissProt::Q2RK33
         (390 letters)



>FitnessBrowser__Marino:GFF1405
          Length = 394

 Score =  183 bits (464), Expect = 8e-51
 Identities = 125/397 (31%), Positives = 202/397 (50%), Gaps = 16/397 (4%)

Query: 1   MQEARRIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPE 60
           +Q + R++ + P     +  K AE R  G DII LG G+PD  TP H I +   EA N  
Sbjct: 3   LQLSSRVQAIKPSPTLAVTNKAAELRAAGQDIIGLGAGEPDFDTPDH-IKQAAIEAINNG 61

Query: 61  NHRYPTSEGLLAFRQAVADWYQRLYGVDLDPRREVVTLIGSKEGIAHISLCYVDPGDINL 120
             +Y   +G  A ++A+   ++R  G+D +  + +V+  G K+   +++L  ++PGD  +
Sbjct: 62  QTKYTAVDGTPALKKAIIAKFKRDNGLDYEANQILVSS-GGKQSFFNLALATLNPGDEAI 120

Query: 121 VPDPGYPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTGA 180
           +P P +  Y    L+A G+   +   A   F      + + +  R +L  IN P+NP+G 
Sbjct: 121 IPAPYWVSYPDMVLVAEGKPVIIETGAETRFKITPEQLENAITERTRLFVINSPSNPSGM 180

Query: 181 VADLKFFQEVVEFARSY-DLIVCHDAAYSEITYDGYRAPSFLQA-PGAKEVGIEFNSVSK 238
              L+  Q + E  + + ++++  D  Y  I + G    + L A P   +     N VSK
Sbjct: 181 AYTLEELQAIGEVLKKHPNIMIATDDMYEPILWTGKPFCNILNATPELYDRTFVLNGVSK 240

Query: 239 PYNMTGWRLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRVYQ 298
            Y+MTGWR+G+A G A +I A+ +I+S   S      Q A  AAL G Q  + E+ + ++
Sbjct: 241 AYSMTGWRIGYAAGPAKIIGAMKKIQSQSTSNPASISQAAAQAALDGDQGCVGEMVKAFK 300

Query: 299 ERRDIIVEGFNSL-GWHLEKPKATFYVWAPVPRG--------YTSASFAEMVLEKAGVII 349
           ER D +VE  N L G        TFYV+ P  +G         T   FAE +L  AGV +
Sbjct: 301 ERHDWLVEALNKLPGVECLNGDGTFYVF-PSFQGAIDADSSVSTDVEFAEKLLTDAGVAL 359

Query: 350 TPGNGYGNYGEGYFRIALTISKERMQEAIERLRRVLG 386
            PG+ +G    G+ R++   S E +++A+ERL++ LG
Sbjct: 360 VPGSAFG--CPGHMRLSFATSMENLEKAVERLQKALG 394


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 332
Number of extensions: 17
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 394
Length adjustment: 31
Effective length of query: 359
Effective length of database: 363
Effective search space:   130317
Effective search space used:   130317
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory