GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Desulfovibrio vulgaris Miyazaki F

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate 8502443 DvMF_3149 acetylornithine aminotransferase (RefSeq)

Query= BRENDA::B1XNF8
         (418 letters)



>FitnessBrowser__Miya:8502443
          Length = 402

 Score =  306 bits (784), Expect = 7e-88
 Identities = 166/400 (41%), Positives = 241/400 (60%), Gaps = 13/400 (3%)

Query: 21  DQYVMHTYGRFPVAIAKGEGCRLWDTEGKSYLDFVAGIATCTLGHAHPALIQAVSAQIQK 80
           +  +  TYGR+P+++A+G+G RLWD +G+ Y+D ++GIA  +LGH H  L +  +AQ +K
Sbjct: 13  ESLLCRTYGRYPISVARGQGSRLWDVDGREYVDLLSGIAVTSLGHCHEELAEVAAAQARK 72

Query: 81  LHHISNLYYIPEQGALAQWIVEHSCADKVFFCNSGAEANEAAIKLVRKYAHTVSDFLEQP 140
           L H+SNL+Y  EQ  LA+ ++  S   K FFCNSGAEANEAAIKL R+Y   V    E  
Sbjct: 73  LVHVSNLFYQEEQLDLAERLLSTSHCTKAFFCNSGAEANEAAIKLARRYMQRVQG-REAY 131

Query: 141 VILSAKSSFHGRTLATITATGQPKYQKHFDPLPDGFAYVPYNDIRALEEAITDIDEGNRR 200
            I++   +FHGRTLAT+ ATGQ K+Q  F P+P+GF  VP  DI AL  AI        +
Sbjct: 132 EIITLTGAFHGRTLATVAATGQAKFQDGFYPMPEGFRQVPSGDIEALRAAI------GPQ 185

Query: 201 VAAIMLEALQGEGGVRPGDVEYFKAVRRICDENGILLVLDEVQVGVGRTGKYWGYENLGI 260
            A +++E +QGEGGV P D +Y +AV+ +C E G+L + DE+Q G+ RTG++W ++N G+
Sbjct: 186 TAGVLVEVVQGEGGVCPLDPDYARAVQALCREKGVLFMTDEIQAGMCRTGRFWSFQNYGL 245

Query: 261 EPDIFTSAKGLAGGIPIGAMMCKDSCA-VFNPGEHASTFGGNPFSCAAALAVVETLEQEN 319
           EPDI + AK LA G+P+GAMM  D  A  F  G HA+TFG      A A   VE + +++
Sbjct: 246 EPDIVSCAKALANGLPMGAMMTTDEVARGFVAGSHATTFGAGALVSAVASRTVEIMLRDD 305

Query: 320 LLENVNARGEQLRAGLKTLAEKYPYFSD-VRGWGLINGMEIKADLELTSIEVVKAAMEKG 378
           L       G ++    + + +K P   D VRG GL+ G+     L     EV +A +++G
Sbjct: 306 LAGRAATEGARIMDRFRAMGQKLPGTIDHVRGLGLMIGVV----LAFPGKEVWQALIDRG 361

Query: 379 LLLAPAGPKVLRFVPPLIVSAAEINEAIALLDQTLAAMAL 418
            +       VLR +P L +  A+++     L+  L+A  L
Sbjct: 362 FICNLTQDCVLRLLPALTIPRADLDAFADALEDILSARTL 401


Lambda     K      H
   0.319    0.136    0.406 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 380
Number of extensions: 15
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 418
Length of database: 402
Length adjustment: 31
Effective length of query: 387
Effective length of database: 371
Effective search space:   143577
Effective search space used:   143577
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory