Align Acetylornithine aminotransferase; ACOAT; EC 2.6.1.11 (uncharacterized)
to candidate 8500245 DvMF_1002 adenosylmethionine-8-amino-7-oxononanoate aminotransferase (RefSeq)
Query= curated2:Q8TUZ5 (389 letters) >lcl|FitnessBrowser__Miya:8500245 DvMF_1002 adenosylmethionine-8-amino-7-oxononanoate aminotransferase (RefSeq) Length = 491 Score = 219 bits (557), Expect = 2e-61 Identities = 148/424 (34%), Positives = 223/424 (52%), Gaps = 57/424 (13%) Query: 19 PVTLVPGEGARVWDDEGNEYIDLVAGIAVNVLGHCHPAVVEAVKEQVERLIHCSNLYY-N 77 P+ + EG R+ D +G Y+D V+ + NV GH HP + A++ Q++++ H + L + Sbjct: 50 PLVIGAAEGNRLTDTDGVSYLDGVSSLWTNVHGHRHPRLDAAIRAQLDKVAHTTLLGLGS 109 Query: 78 EPQAEAARLLAEAAPKDLNKVFFCNSGTESVECAIKLARKF-----------TGCTKFIA 126 EP E A LA AP+ L +VF+ +SG+ SVE A+K+A +F T+F++ Sbjct: 110 EPSIELAARLAAIAPQGLTRVFYSDSGSTSVEVALKIAFQFHRQAPAHLGGDARRTRFLS 169 Query: 127 FEGGFHGRTMGALSATWKPEFREPFEPLV--------PEFEHVPYG-DVNAVEKAI---- 173 +HG T+GA++ F + PL+ P P+G + E+ Sbjct: 170 LRNAYHGDTVGAVALGGMALFHSIYAPLLFDTVKAESPYCYRCPFGRQAGSCERECITHM 229 Query: 174 -------DDDTAAVIVEP-VQGEAGVRIPPEGFLRELRELCDEHGLLLIVDEVQSGMGRT 225 + A +VEP VQG AG+ + P G+LR +RELCDEHG+ L+ DEV G G+T Sbjct: 230 ETLFARHGHELCAAVVEPLVQGAAGMLLQPPGWLRRVRELCDEHGVFLVADEVAVGFGKT 289 Query: 226 GQFFAFEHEDVLPDIVCLAKGLGGG-VPVGATIAREEVAEAF-------EPGDHGSTFGG 277 G FA E E V PD +CLAKG+ GG +P+ AT+ E V + F HG T+ G Sbjct: 290 GTLFACEQEGVTPDFLCLAKGISGGYLPLAATLTTERVHDGFLARHEELRTFFHGHTYTG 349 Query: 278 NPLACAAVCAAVSTVLEENLPEAAERK-GKLAMRILSEAEDV--VEEVRGRGLMMGVEVG 334 NPLACAA A++ EE + E + K +LA R L D+ V ++R RG+M G+E+ Sbjct: 350 NPLACAAAIASLDVFEEERVMERLQPKIARLAAR-LDTLRDLPHVGDIRQRGVMTGIEMV 408 Query: 335 DDERAKD-----------VAREMLDRGALVNVTSGDVIRLVPPLVIGEDELEKALAELAD 383 + K+ V E RG ++ GDV+ L+PPL I +DE++ + + Sbjct: 409 RNRATKEAYDLALRVGHRVTLEARRRGVIIR-PLGDVMVLMPPLSITDDEIDLLVGATGE 467 Query: 384 ALRA 387 A+RA Sbjct: 468 AIRA 471 Lambda K H 0.318 0.137 0.405 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 462 Number of extensions: 22 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 389 Length of database: 491 Length adjustment: 32 Effective length of query: 357 Effective length of database: 459 Effective search space: 163863 Effective search space used: 163863 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory