Align Anthranilate synthase; EC 4.1.3.27 (characterized, see rationale)
to candidate 8501009 DvMF_1746 Anthranilate synthase (RefSeq)
Query= uniprot:B8DM47_DESVM (520 letters) >lcl|FitnessBrowser__Miya:8501009 DvMF_1746 Anthranilate synthase (RefSeq) Length = 520 Score = 1041 bits (2692), Expect = 0.0 Identities = 520/520 (100%), Positives = 520/520 (100%) Query: 1 MEMPEMPAQAEAPETAKAPQAPETAQAPANGNGCPCATTGSGDDIPALPEGGEIVLRQTG 60 MEMPEMPAQAEAPETAKAPQAPETAQAPANGNGCPCATTGSGDDIPALPEGGEIVLRQTG Sbjct: 1 MEMPEMPAQAEAPETAKAPQAPETAQAPANGNGCPCATTGSGDDIPALPEGGEIVLRQTG 60 Query: 61 RWLEADVDTPISVFLGMVGSGQGILLESAEVDGRWGRFSVIAFNFLLRLGCRDGKLEVAV 120 RWLEADVDTPISVFLGMVGSGQGILLESAEVDGRWGRFSVIAFNFLLRLGCRDGKLEVAV Sbjct: 61 RWLEADVDTPISVFLGMVGSGQGILLESAEVDGRWGRFSVIAFNFLLRLGCRDGKLEVAV 120 Query: 121 RDPRLAPLRRFDGMGFIEGTRAVMRALRIEPDAAFADQPPITRALYGYFGYGVSGLFEPK 180 RDPRLAPLRRFDGMGFIEGTRAVMRALRIEPDAAFADQPPITRALYGYFGYGVSGLFEPK Sbjct: 121 RDPRLAPLRRFDGMGFIEGTRAVMRALRIEPDAAFADQPPITRALYGYFGYGVSGLFEPK 180 Query: 181 LAKVLPTSSAEACLALPGTVVLFDHLYNRLCQLSLTDLPGGRVDRSQVDRTPEPPEVGPV 240 LAKVLPTSSAEACLALPGTVVLFDHLYNRLCQLSLTDLPGGRVDRSQVDRTPEPPEVGPV Sbjct: 181 LAKVLPTSSAEACLALPGTVVLFDHLYNRLCQLSLTDLPGGRVDRSQVDRTPEPPEVGPV 240 Query: 241 VNVPEQAVYTRAVARVKDMIRQGEAIQVVLSTRFQASFSGDPFTLYRRLRRINPSPYMFF 300 VNVPEQAVYTRAVARVKDMIRQGEAIQVVLSTRFQASFSGDPFTLYRRLRRINPSPYMFF Sbjct: 241 VNVPEQAVYTRAVARVKDMIRQGEAIQVVLSTRFQASFSGDPFTLYRRLRRINPSPYMFF 300 Query: 301 MRLPGVSLLGSSPEVMVRCRADKLQVSPIAGTRPRGTDDAHDAALARELLEDPKERAEHV 360 MRLPGVSLLGSSPEVMVRCRADKLQVSPIAGTRPRGTDDAHDAALARELLEDPKERAEHV Sbjct: 301 MRLPGVSLLGSSPEVMVRCRADKLQVSPIAGTRPRGTDDAHDAALARELLEDPKERAEHV 360 Query: 361 MLVDLGRNDLGRIAAPGTVQVERFMDVEKFSHVMHLTSRVTAQIEPGRDALDVLAATFPA 420 MLVDLGRNDLGRIAAPGTVQVERFMDVEKFSHVMHLTSRVTAQIEPGRDALDVLAATFPA Sbjct: 361 MLVDLGRNDLGRIAAPGTVQVERFMDVEKFSHVMHLTSRVTAQIEPGRDALDVLAATFPA 420 Query: 421 GTVSGAPKVRAMEIISEAEGLARGPYAGAIGWLGLDRDSVNLDTGITIRSLWVRDGQVHW 480 GTVSGAPKVRAMEIISEAEGLARGPYAGAIGWLGLDRDSVNLDTGITIRSLWVRDGQVHW Sbjct: 421 GTVSGAPKVRAMEIISEAEGLARGPYAGAIGWLGLDRDSVNLDTGITIRSLWVRDGQVHW 480 Query: 481 QAGAGIVFDSVPEMEWKECNNKAAVIRAAVTGGEYVPVNR 520 QAGAGIVFDSVPEMEWKECNNKAAVIRAAVTGGEYVPVNR Sbjct: 481 QAGAGIVFDSVPEMEWKECNNKAAVIRAAVTGGEYVPVNR 520 Lambda K H 0.320 0.137 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1034 Number of extensions: 26 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 520 Length adjustment: 35 Effective length of query: 485 Effective length of database: 485 Effective search space: 235225 Effective search space used: 235225 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory