Align Bifunctional chorismate mutase/prephenate dehydratase; Chorismate mutase-prephenate dehydratase; P-protein; EC 5.4.99.5; EC 4.2.1.51 (characterized)
to candidate 8501012 DvMF_1749 prephenate dehydratase (RefSeq)
Query= SwissProt::P27603 (365 letters) >FitnessBrowser__Miya:8501012 Length = 418 Score = 259 bits (663), Expect = 7e-74 Identities = 150/361 (41%), Positives = 212/361 (58%), Gaps = 12/361 (3%) Query: 4 ADQLKALRVRIDSLDERILDLISERARCAQEVARVKTASWPKAEEAVFYRPEREAWVLKH 63 A +L +R ID LD +L+L++ RA + EV R+K + + ++P RE VL++ Sbjct: 57 AGRLGQIRHEIDGLDSDLLNLLNRRASLSLEVGRIKAD-----DAGIVFKPFREREVLEN 111 Query: 64 IMELNKGPLDNEEMARLFREIMSSCLALEQPLRVAYLGPEGTFSQAAALKHFGHSVISKP 123 +M N GPL NE + ++REI+SS +L++P +VAYLGPEGTFS A ++ G +V P Sbjct: 112 LMAANGGPLPNEHLRSIWREILSSSRSLQRPQKVAYLGPEGTFSYFAGVEFLGKAVEYMP 171 Query: 124 MAAIDEVFREVVAGAVNFGVVPVENSTEGAVNHTLDSFLEHDIVICGEVELRIHHHLLVG 183 +D VFR V GVVP+ENS G V +LD FL H++ I E+ RI H LL Sbjct: 172 QKDLDGVFRAVHDRQCELGVVPLENSLHGTVGQSLDLFLSHEVFIQSELFCRISHCLLTT 231 Query: 184 ETTKTDRITRIYSHAQSLAQCRKWLDAHYPNVERVAVSSNADAAKRVKSEWNSAAIAGDM 243 ET+ D +T +YSH Q LAQC WL P + S A AA+RV E +AAI Sbjct: 232 ETSLAD-VTTVYSHPQPLAQCGGWLRQALPGARIIPADSTASAARRVGGEKGAAAIGHRS 290 Query: 244 AAQLYGLSKLAEKIEDRPVNSTRFLIIGSQEVPPTGDDKTSIIVSMRNKPGALHELLMPF 303 A L GL+ LA IED+P N TRF++IG G DKTS++ S+ ++PGAL E+L Sbjct: 291 LAALLGLNILARGIEDQPDNWTRFVVIGPAPAGQPGTDKTSMLFSVPDRPGALAEVLNLL 350 Query: 304 HSNGIDLTRIETRPSRSGKWTYVFFIDC---MGHHQDPLIKNVLEKIGHEAVALKVLGSY 360 GI++ ++E+RP R KW YVFF+D +G+ + + L ++ H L++LGSY Sbjct: 351 AREGINMKKLESRPLRGEKWKYVFFVDVECDLGNEDYGRVVHELRRLCH---TLRILGSY 407 Query: 361 P 361 P Sbjct: 408 P 408 Lambda K H 0.319 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 343 Number of extensions: 11 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 365 Length of database: 418 Length adjustment: 31 Effective length of query: 334 Effective length of database: 387 Effective search space: 129258 Effective search space used: 129258 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
Align candidate 8501012 DvMF_1749 (prephenate dehydratase (RefSeq))
to HMM PF01817 (CM_2)
# hmmsearch :: search profile(s) against a sequence database # HMMER 3.3.1 (Jul 2020); http://hmmer.org/ # Copyright (C) 2020 Howard Hughes Medical Institute. # Freely distributed under the BSD open source license. # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # query HMM file: ../tmp/path.aa/PF01817.21.hmm # target sequence database: /tmp/gapView.6539.genome.faa # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Query: CM_2 [M=75] Accession: PF01817.21 Description: Chorismate mutase type II Scores for complete sequences (score includes all domains): --- full sequence --- --- best 1 domain --- -#dom- E-value score bias E-value score bias exp N Sequence Description ------- ------ ----- ------- ------ ----- ---- -- -------- ----------- 2.1e-24 72.0 0.0 4.2e-24 71.1 0.0 1.5 1 lcl|FitnessBrowser__Miya:8501012 DvMF_1749 prephenate dehydratase Domain annotation for each sequence (and alignments): >> lcl|FitnessBrowser__Miya:8501012 DvMF_1749 prephenate dehydratase (RefSeq) # score bias c-Evalue i-Evalue hmmfrom hmm to alifrom ali to envfrom env to acc --- ------ ----- --------- --------- ------- ------- ------- ------- ------- ------- ---- 1 ! 71.1 0.0 4.2e-24 4.2e-24 1 74 [. 64 140 .. 64 141 .. 0.97 Alignments for each domain: == domain 1 score: 71.1 bits; conditional E-value: 4.2e-24 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCTSGSS-HHHHHHHHHHHHH...HHS-HHHHHHHHHHHHHHHHHHH CS CM_2 1 RkeIdeiDdeileLLaeRaelakevgeyKkeeglpvydpeReaevlerlee...galdeeaierifreiisasralq 74 R+eId +D+++l+LL++Ra l+ evg++K++ + v+ p Re+evle+l++ g+l++e +++i+rei+s sr+lq lcl|FitnessBrowser__Miya:8501012 64 RHEIDGLDSDLLNLLNRRASLSLEVGRIKADDAGIVFKPFREREVLENLMAangGPLPNEHLRSIWREILSSSRSLQ 140 99***************************999989****************98888********************9 PP Internal pipeline statistics summary: ------------------------------------- Query model(s): 1 (75 nodes) Target sequences: 1 (418 residues searched) Passed MSV filter: 1 (1); expected 0.0 (0.02) Passed bias filter: 1 (1); expected 0.0 (0.02) Passed Vit filter: 1 (1); expected 0.0 (0.001) Passed Fwd filter: 1 (1); expected 0.0 (1e-05) Initial search space (Z): 1 [actual number of targets] Domain search space (domZ): 1 [number of targets reported over threshold] # CPU time: 0.01u 0.00s 00:00:00.01 Elapsed: 00:00:00.00 # Mc/sec: 9.96 // [ok]
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory